Review

Pharmacokinetics and pharmacodynamics of therapeutic antibodies in tumors and tumor-draining lymph nodes

  • Received: 13 June 2020 Accepted: 10 November 2020 Published: 19 November 2020
  • The signaling axis from the primary tumor to the tumor-draining lymph node (TDLN) has emerged as a crucial mediator for the efficacy of immunotherapies in neoadjuvant settings, challenging the primary use of immunotherapy in adjuvant settings. TDLNs are regarded as highly opportunistic sites for cancer cell dissemination and promote further spread via several primary tumor-dependent mechanisms. Lesion-level mixed responses to antibody immunotherapy have been traced to local immune signatures present in the TDLN and the organ-specific primary tumors that they drain. However, the pharmacokinetics (PK) and biodistribution gradients of antibodies in primary tumors and TDLNs have not been systemically evaluated. These concentration gradients are critical in ensuring adequate antibody pharmacodynamic (PD) T-cell activation and/or anti-tumor response. The current work reviews the knowledge for developing physiologically-based PK and pharmacodynamic (PBPK/PD) models to quantify antibody biodistribution gradients in anatomically distinct primary tumors and TDLNs as a means to characterize the clinically observed heterogeneous responses to antibody therapies. Several clinical and pathophysiological considerations in modeling the primary tumor-TDLN axis, as well as a summary of both preclinical and clinical PK/PD lymphatic antibody disposition studies, will be provided.

    Citation: Eric Salgado, Yanguang Cao. Pharmacokinetics and pharmacodynamics of therapeutic antibodies in tumors and tumor-draining lymph nodes[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 112-131. doi: 10.3934/mbe.2021006

    Related Papers:

  • The signaling axis from the primary tumor to the tumor-draining lymph node (TDLN) has emerged as a crucial mediator for the efficacy of immunotherapies in neoadjuvant settings, challenging the primary use of immunotherapy in adjuvant settings. TDLNs are regarded as highly opportunistic sites for cancer cell dissemination and promote further spread via several primary tumor-dependent mechanisms. Lesion-level mixed responses to antibody immunotherapy have been traced to local immune signatures present in the TDLN and the organ-specific primary tumors that they drain. However, the pharmacokinetics (PK) and biodistribution gradients of antibodies in primary tumors and TDLNs have not been systemically evaluated. These concentration gradients are critical in ensuring adequate antibody pharmacodynamic (PD) T-cell activation and/or anti-tumor response. The current work reviews the knowledge for developing physiologically-based PK and pharmacodynamic (PBPK/PD) models to quantify antibody biodistribution gradients in anatomically distinct primary tumors and TDLNs as a means to characterize the clinically observed heterogeneous responses to antibody therapies. Several clinical and pathophysiological considerations in modeling the primary tumor-TDLN axis, as well as a summary of both preclinical and clinical PK/PD lymphatic antibody disposition studies, will be provided.
    加载中


    [1] M. Brooks, Cancer Drugs Dominate Top 10 Best-Selling Drugs in 2018, Medscape Medical News, March 19, 2019.
    [2] Press release: The Nobel Prize in Physiology or Medicine 2018, In: NobelPrize.org, 2018.
    [3] R.-M. Lu, Y.-C. Hwang, I. J. Liu, C.-C. Lee, H.-Z. Tsai, H.-J. Li, et al., Development of therapeutic antibodies for the treatment of diseases, J. Biomed. Sci., 27 (2020), 1.
    [4] H. M. Shepard, G. L. Phillips, C. D Thanos, M. Feldmann, Developments in therapy with monoclonal antibodies and related proteins, Clin. Med. (Lond), 17 (2017), 220-232.
    [5] N. L. Dirks, B. Meibohm, Population Pharmacokinetics of Therapeutic Monoclonal Antibodies, Clin. Pharmacokinet., 49 (2010), 633-659.
    [6] D. N. McLennan, C. J. H. Porter, G. A. Edwards, S. W. Martin, A. C. Heatherington, S. A. Charman, Lymphatic Absorption Is the Primary Contributor to the Systemic Availability of Epoetin Alfa following Subcutaneous Administration to Sheep, J. Pharmacol. Exp. Ther., 313 (2005), 345.
    [7] A. Supersaxo, W. R. Hein, H. Steffen, Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration, Pharm. Res., 7 (1990), 167-169.
    [8] L. N. Cueni, M. Detmar, The lymphatic system in health and disease, Lymphat. Res. Biol., 6 (2008), 109-122.
    [9] H. Zhou, F. P. Theil, ADME and translational pharmacokinetics/pharmacodynamics of therapeutic proteins, Gut, 60 (2015), 774-779.
    [10] J. E. Moore, Jr., C. D. Bertram, Lymphatic System Flows, Ann. Rev. Fluid. Mech., 50 (2018), 459-482.
    [11] C. O'Driscoll, Lymphatic Transport of Drugs, 1992.
    [12] A. C. Huang, R. J. Orlowski, X. Xu, R. Mick, S. M. George, P. K. Yan, et al., A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma, Nat. Med., 25 (2019), 454-461.
    [13] K. N. Margaris, R. A. Black, Modelling the lymphatic system: challenges and opportunities, J. Roy. Soc. Interface, 9 (2012), 601-612.
    [14] Z. Xu, Q. Wang, Y. Zhuang, B. Frederick, H. Yan, E. Bouman-Thio, et al., Subcutaneous Bioavailability of Golimumab at 3 Different Injection Sites in Healthy Subjects, J. Clin. Pharmacol., 50 (2010), 276-284.
    [15] W. Pao, C.-H. Ooi, F. Birzele, A. Ruefli-Brasse, M. A. Cannarile, B. Reis, et al., Tissue-Specific Immunoregulation: A Call for Better Understanding of the "Immunostat" in the Context of Cancer, Cancer Discov., 8 (2018), 395.
    [16] M. Ying, B. S. Pang, Three-dimensional ultrasound measurement of cervical lymph node volume, Br. J. Radiol., 82 (2009), 617-625.
    [17] G. M. Glazer, B. H. Gross, L. E. Quint, I. R. Francis, F. L. Bookstein, M. B. Orringer, Normal mediastinal lymph nodes: number and size according to American Thoracic Society mapping, AJR Am. J. Roentgenol., 144 (1985), 261-265.
    [18] F. Maxwell, C. de Margerie Mellon, M. Bricout, E. Cauderlier, M. Chapelier, M. Albiter, et al., Diagnostic strategy for the assessment of axillary lymph node status in breast cancer, Diagn. Interv. Imaging, 96 (2015), 1089-1101.
    [19] R. E. Dorfman, M. B. Alpern, B. H. Gross, M. A. Sandler, Upper abdominal lymph nodes: criteria for normal size determined with CT, Radiology, 180 (1991), 319-322.
    [20] M. Taupitz, Imaging of Lymph Nodes — MRI and CT. In: Hamm B, Forstner R, editors. MRI and CT of the Female Pelvis. Berlin, Heidelberg: Springer Berlin Heidelberg. (2007), 321-329.
    [21] E. A. Abdel Gawad, M. F. Abu Samra, A. M. Talat, The utility of multi-detector CT in detection and characterization of mesenteric lymphadenopathy with histopathological confirmation, Egypt. J. Radiol. Nucl. Med., 47 (2016), 757-764.
    [22] S. P. Leong, E. K. Nakakura, R. Pollock, M. A. Choti, D. L. Morton, W. D. Henner, et al., Unique patterns of metastases in common and rare types of malignancy, J. Surg. Oncol., 103 (2011), 607-614.
    [23] S. Chandrasekaran, M. R. King, Microenvironment of tumor-draining lymph nodes: opportunities for liposome-based targeted therapy, Int. J. Mol. Sci., 15 (2014), 20209-20239.
    [24] S. Hirakawa, S. Kodama, R. Kunstfeld, K. Kajiya, L. F. Brown, M. Detmar, VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis, J. Exp. Med., 201 (2005), 1089-1099.
    [25] T. J. Curiel, S. Wei, H. Dong, X. Alvarez, P. Cheng, P. Mottram, et al., Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity, Nat. Med., 9 (2003), 562-567.
    [26] K. Honey, Use of Pembrolizumab Expanded to 13th Type of Cancer in Five Years, In: Catalyst CR, editor: American Association for Cancer Research. (2019).
    [27] J. C. Osorio, K. C. Arbour, D. T. Le, J. N. Durham, A. J. Plodkowski, D. F. Halpenny, et al., Lesion-Level Response Dynamics to Programmed Cell Death Protein (PD-1) Blockade, J. Clin. Oncol., 37 (2019), 3546-3555.
    [28] L. H. Schwartz, S. Litière, E. de Vries, R. Ford, S. Gwyther, S. Mandrekar, et al., RECIST 1.1-Update and clarification: From the RECIST committee, Eur. J. Cancer, 62 (2016), 132-137.
    [29] K. Feng, R. H. Leary, Toward personalized medicine with physiologically based pharmacokinetic modeling, Int. J. Pharmacokinet., 2 (2016), 1-4.
    [30] I. Nestorov, Whole-body physiologically based pharmacokinetic models, Expert Opin. Drug Metab. Toxicol., 3 (2007), 235-249.
    [31] S. R. Urva, V. C. Yang, J. P. Balthasar, Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody, J. Pharm. Sci., 99 (2010), 1582-1600.
    [32] L. Abuqayyas, J. P. Balthasar, Application of PBPK modeling to predict monoclonal antibody disposition in plasma and tissues in mouse models of human colorectal cancer, J. Pharmacokinet. Pharmacodyn., 39 (2012), 683-710.
    [33] D. K. Shah, A. M. Betts, Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human, J. Pharmacokinet. Pharmacodyn., 39 (2012), 67-86.
    [34] N. Varkhede, M. L. Forrest, Understanding the Monoclonal Antibody Disposition after Subcutaneous Administration using a Minimal Physiologically based Pharmacokinetic Model, J. Pharm. Pharm. Sci., 21 (2018), 130s-148s.
    [35] K. L. Gill, I. Gardner, L. Li and M. Jamei, A Bottom-Up Whole-Body Physiologically Based Pharmacokinetic Model to Mechanistically Predict Tissue Distribution and the Rate of Subcutaneous Absorption of Therapeutic Proteins, Aaps J., 18 (2016), 156-170.
    [36] Y. Cao, W. J. Jusko, Incorporating target-mediated drug disposition in a minimal physiologically-based pharmacokinetic model for monoclonal antibodies, J. Pharmacokinet. Pharmacodyn., 41 (2014), 375-387.
    [37] Y. Cao, J. P. Balthasar, W. J. Jusko, Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies, J. Pharmacokinet. Pharmacodyn., 40 (2013), 597-607.
    [38] Y. Cao, W. J. Jusko, Applications of minimal physiologically-based pharmacokinetic models, J. Pharmacokinet. Pharmacodyn., 39 (2012), 711-723.
    [39] B. M. Maas, Y. Cao, A minimal physiologically based pharmacokinetic model to investigate FcRn-mediated monoclonal antibody salvage: Effects of Kon, Koff, endosome trafficking, and animal species, mAbs, 10 (2018), 1322-1331.
    [40] D. E. Mager, W. J. Jusko, General pharmacokinetic model for drugs exhibiting target-mediated drug disposition, J. Pharmacokinet. Pharmacodyn., 28 (2001), 507-532.
    [41] P. R. V. Malik, A. Hamadeh, C. Phipps, A. N. Edginton, Population PBPK modelling of trastuzumab: a framework for quantifying and predicting inter-individual variability, J. Pharmacokinet. Pharmacodyn., 44 (2017), 277-290.
    [42] L. V. Brown, E. A. Gaffney, A. Ager, J. Wagg, M. C. Coles, Comparative Anatomical Limits of CART-Cell Delivery to Tumours in Mice and Men, bioRxiv (2019), 759167.
    [43] L. Zhao, P. Ji, Z. Li, P. Roy, C. G. Sahajwalla, The Antibody Drug Absorption Following Subcutaneous or Intramuscular Administration and Its Mathematical Description by Coupling Physiologically Based Absorption Process with the Conventional Compartment Pharmacokinetic Model, J. Clin. Pharmacol., 53 (2013), 314-325.
    [44] S. A. Charman, A. M. Segrave, G. A. Edwards, C. J. Porter, Systemic availability and lymphatic transport of human growth hormone administered by subcutaneous injection, J. Pharm. Sci., 89 (2000), 168-177.
    [45] W. Wang, N. Chen, X. Shen, P. Cunningham, S. Fauty, K. Michel, et al., Lymphatic transport and catabolism of therapeutic proteins after subcutaneous administration to rats and dogs, Drug. Metab. Dispos., 40 (2012), 952-962.
    [46] R. P. Junghans, C. L. Anderson, The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor, Proc. Natl Acad. Sci. USA, 93 (1996), 5512.
    [47] C. W. Menke-van der Houven van Oordt, A. McGeoch, M. Bergstrom, I. McSherry, D. A. Smith, M. Cleveland, et al., Immuno-PET Imaging to Assess Target Engagement: Experience from (89)Zr-Anti-HER3 mAb (GSK2849330) in Patients with Solid Tumors, J. Nucl. Med., 60 (2019), 902-909.
    [48] R. de Bree, J. C. Roos, J. J. Quak, W. den Hollander, A. J. Wilhelm, A. van Lingen, et al., Biodistribution of radiolabeled monoclonal antibody E48 IgG and F(ab')2 in patients with head and neck cancer, Clin. Cancer Res., 1 (1995), 277-286.
    [49] J. E. Mortimer, J. R. Bading, J. M. Park, P. H. Frankel, M. I. Carroll, T. T. Tran, et al., Tumor Uptake of (64)Cu-DOTA-Trastuzumab in Patients with Metastatic Breast Cancer, J. Nucl. Med., 59 (2018), 38-43.
    [50] P. E. Kinahan, J. W. Fletcher, Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy, Semin. Ultrasound CT MR, 31 (2010), 496-505.
    [51] M. Chalabi, L. F. Fanchi, K. K. Dijkstra, J. G. Van den Berg, A. G. Aalbers, K. Sikorska, et al., Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers, Nat. Med., 26 (2020), 566-576.
    [52] T. F. Cloughesy, A. Y. Mochizuki, J. R. Orpilla, W. Hugo, A. H. Lee, T. B. Davidson, et al., Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma, Nat. Med., 25 (2019), 477-486.
    [53] S. L. Topalian, J. M. Taube, D. M. Pardoll, Neoadjuvant checkpoint blockade for cancer immunotherapy, Science, 367 (2020), eaax0182.
    [54] J. Liu, S. J. Blake, M. C. Yong, H. Harjunpä ä, S. F. Ngiow, K. Takeda, et al., Improved Efficacy of Neoadjuvant Compared to Adjuvant Immunotherapy to Eradicate Metastatic Disease, Cancer Discov., 6 (2016), 1382-1399.
    [55] H. Assi, E. Sbaity, M. Abdelsalam, A. Shamseddine, Controversial indications for sentinel lymph node biopsy in breast cancer patients, Biomed. Res. Int., 2015 (2015), 405949-405949.
    [56] F. Colotta, P. Allavena, A. Sica, C. Garlanda and A. Mantovani, Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability, Carcinogenesis, 30 (2009), 1073-1081.
    [57] M. A. Swartz, A. W. Lund, Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity, Nat. Rev. Cancer, 12 (2012), 210-219.
    [58] H. Wiig, M. A. Swartz, Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer, Physiol. Rev., 92 (2012), 1005-1060.

    © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
  • Reader Comments
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(16) PDF downloads(4) Cited by()

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog