Research article Special Issues

Study of performance criteria of serial configuration of two chemostats

  • Received: 08 May 2020 Accepted: 04 September 2020 Published: 22 September 2020
  • This paper deals with thorough analysis of serial configurations of two chemostats. We establish an in-depth mathematical study of all possible steady states, and we compare the performances of the two serial interconnected chemostats with the performances of a single one. The comparison is evaluated under three different criteria. We analyze, at steady state, the minimization of the output substrate concentration, the productivity of the biomass and the biogas flow rate. We determine specific conditions, which depend on the biological parameters, the operating parameters of the model and the distribution of the total volume. These necessary and sufficient conditions provide the most efficient serial configuration of two chemostats versus one. Complementarily, this mainly helps to discern when it is not advisable to use the serial configuration instead of a simple chemostat, depending on: the considered criterion, the operating parameters fixed by the operator and the distribution of the volumes into the two tanks.

    Citation: Manel Dali Youcef, Alain Rapaport, Tewfik Sari. Study of performance criteria of serial configuration of two chemostats[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 6278-6309. doi: 10.3934/mbe.2020332

    Related Papers:

  • This paper deals with thorough analysis of serial configurations of two chemostats. We establish an in-depth mathematical study of all possible steady states, and we compare the performances of the two serial interconnected chemostats with the performances of a single one. The comparison is evaluated under three different criteria. We analyze, at steady state, the minimization of the output substrate concentration, the productivity of the biomass and the biogas flow rate. We determine specific conditions, which depend on the biological parameters, the operating parameters of the model and the distribution of the total volume. These necessary and sufficient conditions provide the most efficient serial configuration of two chemostats versus one. Complementarily, this mainly helps to discern when it is not advisable to use the serial configuration instead of a simple chemostat, depending on: the considered criterion, the operating parameters fixed by the operator and the distribution of the volumes into the two tanks.


    加载中


    [1] J. Monod, La technique de culture continue: Theorie et applications, Ann. Inst. Pasteur Mic., 79 (1950), 39-410.
    [2] A. Novick, L. Szilard, Description of the chemostat, Science, 112 (1950), 715-716.
    [3] D. Herbert, R. Elsworth, R. C. Telling, The continuous culture of bacteria; a theoretical and experimental study, Microbiology, 14 (1956), 601-622.
    [4] J. Harmand, C. Lobry, A. Rapaport, T. Sari, The Chemostat: Mathematical Theory of Microorganism Cultures, John Wiley & Sons, 2017.
    [5] P. A. Hoskisson, G. Hobbs, Continuous culture-making a comeback?, Microbiology, 151 (2005), 3153-3159. doi: 10.1099/mic.0.27924-0
    [6] H. L. Smith, P. Waltman, The theory of the chemostat: dynamics of microbial competition, Cambridge University Press, Cambridge, 1995.
    [7] M. Wade, J. Harmand, B. Benyahia, T. Bouchez, S. Chaillou, B. Cloez, et al., Perspectives in mathematical modelling for microbial ecology, Ecol. Model., 321 (2016), 64-74.
    [8] C. P. L. Grady, G. T. Daigger, N. G. Love, C. D. M. Filipe, Biological wastewater treatment, 3rd edition, CRC press, 2011.
    [9] D. Dochain, P. A. Vanrolleghem, Dynamic modelling & estimation in wastewater treatment processes, IWA Publishing, (2001).
    [10] C. M. Kung, B. Baltzis, The growth of pure and simple microbial competitors in a moving and distributed medium, Math. Biosci., 111 (1992), 295-313. doi: 10.1016/0025-5564(92)90076-9
    [11] B. Tang, Mathematical investigations of growth of microorganisms in the gradostat, J. Math. Biol., 23 (1986), 319-339. doi: 10.1007/BF00275252
    [12] C. D. de Gooijer, W. A. M. Bakker Wilfried, H. H. Beeftink, J. Tramper, Bioreactors in series: An overview of design procedures and practical applications, Enzyme Microb. Tech., 18 (1996), 202-219. doi: 10.1016/0141-0229(95)00090-9
    [13] G. Hill, C. Robinson, Minimum tank volumes for CFST bioreactors in series, Can. J. Chem. Eng., 67 (1989), 818-824. doi: 10.1002/cjce.5450670513
    [14] E. Scuras, A. Jobbagy, L. Grady, Optimization of activated sludge reactor configuration: kinetic considerations, Water Res., 35 (2001), 4277-4284. doi: 10.1016/S0043-1354(01)00177-4
    [15] A. Rapaport, Some non-intuitive properties of simple extensions of the chemostat model, Ecol. Complexity, Elsevier, 34 (2018), 111-118. doi: 10.1016/j.ecocom.2017.02.003
    [16] I. Haidar, A. Rapaport, F. Gérard, Effects of spatial structure and diffusion on the performances of the chemostat, Math. Biosci. Eng., 8 (2011), 953-971. doi: 10.3934/mbe.2011.8.953
    [17] J. Harmand, Contribution à l'analyse et au contrôle des systèmes biologiques application aux bio-procédés de dépollution, Habilitation à diriger des recherches, Université C. Bernard Lyon, 2004.
    [18] J. Zambrano, B. Carlsson, Optimizing zone volumes in bioreactors described by Monod and Contois growth kinetics, Proceeding of the IWA World Water Congress & Exhibition, 2014. Available from: https://www.researchgate.net/profile/Jesus_Zambrano4/publication/261831366.
    [19] J. Zambrano, B. Carlsson, S. Diehl, Optimal steady-state design of zone volumes of bioreactors with Monod growth kinetics, Biochem. Eng. J., 100 (2015), 59-66. doi: 10.1016/j.bej.2015.04.002
    [20] D. Herbert, Multi-stage continuous culture, in Continuous cultivation of microorganism, Academic Press, 1964.
    [21] I. Haidar, Dynamiques Microbiennes Et Modélisation Des Cycles Biogéochimiques Terrestres, Thèse de l'Université de Montpellier, 2011.
    [22] R. Fekih-Salem, C. Lobry, T. Sari, A density-dependent model of competition for one resource in the chemostat, Math. Biosci., 286 (2017), 104-122. doi: 10.1016/j.mbs.2017.02.007
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2957) PDF downloads(103) Cited by(6)

Article outline

Figures and Tables

Figures(16)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog