Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Global analysis and optimal harvesting for a hybrid stochastic phytoplankton-zooplankton-fish model with distributed delays

1 School of Mathematical Sciences, Chongqing Normal University, Chongqing 401131, China
2 School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Special Issues: Applications of delay differential equations in biology

In this paper, we formulate a phytoplankton-zooplankton-fish model with distributed delays and hybrid stochastic noises involving Brownian motion and Markov chain, and propose an optimal harvesting problem pursuing the maximum of total economic income. By global analysis in terms of some system parameters, we investigate the dynamical behaviors on the well-posedness, bounded- ness, persistence, extinction, stability and attractiveness of the solutions for the stochastic delayed system. Moreover, we provide sufficient and necessary condition ensuring the existence of the optimization solution for the optimization problem and obtain the optimal harvesting effect and the maximum of sustainable yield. Lastly, two numerical examples and their simulations are given to illustrate the effectiveness of our results.
  Article Metrics

Keywords phytoplankton-zooplankton-fish model; white noise; Markov switching; distributed delays; optimal harvesting

Citation: Yuanpei Xia, Weisong Zhou, Zhichun Yang. Global analysis and optimal harvesting for a hybrid stochastic phytoplankton-zooplankton-fish model with distributed delays. Mathematical Biosciences and Engineering, 2020, 17(5): 6149-6180. doi: 10.3934/mbe.2020326


  • 1. J. Steele, Stability of Plankton Ecosystem, Chapman and Hall, London, 1974.
  • 2. T. Saha, M. Bandyopadhyay, Dynamical analysis of toxin producing phytoplankton-zooplankton interactions, Nonlinear Anal. Real World Appl., 10 (2009), 314-332.
  • 3. Y. Lv, Y. Pei, S. Gao, C. Li, Harvesting of a phytoplankton-zooplankton model, Nonlinear Anal. Real World Appl., 11 (2010), 3608-3619.
  • 4. C. Liu, L. Wang, Q. Zhang, Y. Yun, Dynamical analysis in a bioeconomic phytoplankton zooplankton system with double time delays and environmental stochasticity, Phys. A, 482 (2017), 682-698.
  • 5. X. Meng, J. Li, Stability and Hopf bifurcation analysis of a delayed phytoplankton-zooplankton model with Allee effect and linear harvesting, Math. Biosci. Eng., 17 (2019), 1973-2002.
  • 6. G. Denaro, D. Valenti, B. Spagnolo, G. Basilone, S. Mazzola, S. W. Zgoz, et al., Dynamics of two picophytoplankton groups in mediterranean sea: Analysis of the deep chlorophyll maximum by a stochastic advection-reaction-diffusion model, PLoS One, 8 (2013), e66765.
  • 7. G. Denaro, D. Valenti, A. La Cognata, B. Spagnolo, A. Bonanno, G. Basilone, et al., Spatio-temporal behaviour of the deep chlorophyll maximum in Mediterranean Sea: Development of a stochastic model for picophytoplankton dynamics, Ecol. Complex, 13 (2013), 21-34.
  • 8. D. Valenti, G. Denaro, A. L. Cognata, B. Spagnolo, Picophytoplankton dynamics in noisy marine environment, Acta. Phys. Pol B, 43 (2012), 1227-1240.
  • 9. A. S. Heiskanen, T. Tamminen, K. Gundersen, Impact of planktonic food web structure on nutrient retention and loss from a late summer pelagic system in the coastal northern Baltic Sea, Mar. Ecol. Prog. Ser., 145 (1996), 195-208.
  • 10. M. Scheffe, Fish and nutrients interplay determines algal biomass: a minimal model, Oikos, 62 (1991), 271-282.
  • 11. A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow, B. L. Li, Spatio-temporal complexity of plankton and fish dynamics, SIAM Rev., 44 (2002), 311-370.
  • 12. P. Panja, S. K. Mondal, Stability analysis of coexistence of three species prey-predator model, Nonlinear Anal., 81 (2015), 373-382.
  • 13. A. Sharma, A. K. Sharma, K. Agnihotri, Complex dynamic of plankton-fish interaction with quadratic harvesting and time delay, Model Earth Syst. Environ., 2 (2016), 1-17.
  • 14. X. Y. Meng, Y.Q. Wu, Bifurcation and control in a singular phytoplankton-zooplankton-fish model with nonlinear fish harvesting and taxation, Int. J. Bifurcat. Chaos, 28 (2018), 1850042.
  • 15. Z. Wei, J. Sugie, Global asymptotic stability and equiasymptotic stability for a time-varying phytoplankton-zooplankton-fish system, Nonlinear Anal. Real World Appl., 46 (2019), 116-136.
  • 16. B. Buonomo, M. Cerasuolo, The effect of time delay in plant-pathogen interactions with host demography, Math. Biosci. Eng., 12 (2015), 473-490.
  • 17. B. Tian, Y. Qiu, N. Chen, Periodic and almost periodic solution for a non-autonomous epidemic predator-prey system with time-delay, Appl. Math. Copmut., 215 (2009), 779-790.
  • 18. O. A. Chichigina, A. A. Dubkov, D, Valenti, B. Spagnolo, Stability in a system subject to noise with regulated periodicity, Phys. Rev. E, 84 (2011), 021134.
  • 19. D. Valenti, L. Tranchina, M. Brai, A. Caruso, C. Cosentino, B. Spagnolo, Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy), Ecol. Model, 213 (2008), 449-462.
  • 20. A. A. Dubkov, B. Spagnolo, Verhulst model with Lévy white noise excitation, Eur. Phys. J. B, 65 (2008), 361-367.
  • 21. Q. Luo, X. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 355 (2009), 577-593.
  • 22. M. Slatkin, The dynamics of a Population in a Markovian environment, Ecology, 59 (1978), 249-256.
  • 23. H. Qiu, W. Deng, Stationary distribution and global asymptotic stability of a three-species stochastic food-chain system, Turk. J. Math., 41 (2017), 1292-1307.
  • 24. Y. Ma, Q. Zhang, L. Wang, T. Kang, Dissipative control of a three-species food chain stochastic system with a hidden Markovchain, Adv. Differ. Equ-Ny., 2017 (2017), 1-22.
  • 25. Y. Lin, D. Jiang, Long-time behavior of a stochastic predator-prey model with modified Leslie-Gower and Holling-type II schemes, Int. J. Biomath, 9 (2016), 1650039.
  • 26. J. Lv, K. Wang, Asymptotic properties of a stochastic predator-prey system with Holling II functional response, Commun. Nonlinear. Sci. Numer Simulat., 16 (2011), 4037-4048.
  • 27. Z. Liu, N. Shi, D. Jiang, C. Ji, The Asymptotic behavior of a stochastic predator-prey system with Holling II functional response, Abstr. Appl. Anal., 2012 (2012), 1-14.
  • 28. G. Gilioli, S. Pasquali, F. Ruggeri, Nonlinear functional response parameter estimation in a stochastic predator-prey model, Math. Biosci. Eng., 9 (2012), 75-96.
  • 29. C. S. Reynolds, The Ecology of Freshwater Phytoplankton, Cambridge University Press, Cambridge, 1984.
  • 30. C. W. Clark, Mathematical Bio-Economics: The Optimal Management of Renewable Resources, Wiley, New York, 1976.
  • 31. C. W. Clark, Bioeconomic Modeling and Resource Management, in Applied Mathematical Ecology (eds. S. A. Levin), Springer, 1989, 11-57.
  • 32. M. Mesterton-Gibbons, On the optimal policy for combining harvesting of predator and prey, Nat. Resour. Model, 3 (1988), 63-90.
  • 33. M. Mesterton-Gibbons, A technique for finding optimal two-species harvesting policies, Ecol. Model, 92 (1996), 235-244
  • 34. S. Wang, L. Wang, T. Wei, Optimal harvesting for a stochastic predator-prey model with S-type distributed time delays, Methodol Comput. Appl., 20 (2016), 37-68.
  • 35. M. Liu, C. Bai, Analysis of a stochastic tri-trophic food-chain model with harvesting, J. Math. Biol., 73 (2016), 597-625.
  • 36. M. Liu, X. He, J. Yu, Dynamics of a stochastic regime-switching predator-prey model with harvesting and distributed delay, Nonlinear Anal. Hybrid Syst., 28 (2018), 87-104.
  • 37. W. J. Anderson, Continuous-Time Markov Chains, Springer, New York, 1991.
  • 38. R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1975.
  • 39. X. Zhang, W. Li, M. Liu, K. Wang, Dynamics of a stochastic Holling II one-predator two-prey system with jumps, Phys. A, 421 (2015), 571-582.
  • 40. X. Mao, C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, London, 2006.
  • 41. M. Liu, J. Yu, P. S. Mandal, Dynamics of a stochastic delay competitive model with harvesting and Markovian switching, Appl. Math. Comput., 337 (2018), 335-349.
  • 42. V. M. Popov, Hyperstability of Control Systems, Springer-Verlag, New York, 1973.
  • 43. D. Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996.
  • 44. L. Thomas, Estimating Phytoplankton Growth Rates from Compositional Data, in Oceanography/Biological Oceanography Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Massachusetts Institute Of Technology, 2008.
  • 45. T. Nanazato, M. Yasuno, Population dynamics and production of cladoceran zooplankton in the highly eutrophic Lake Kasumigaura, Hydrobiologia, 124 (1981), 13-22.
  • 46. Y. Wang, Q. Liu, Estimating natural mortality from stock size and catch data (in Chinese), Period. Ocean Univ. China, 35 (2005), 020-024.


Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved