
Mathematical Biosciences and Engineering, 2020, 17(5): 60646084. doi: 10.3934/mbe.2020322
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A consumerresource competition model with a statedependent delay and stagestructured consumer species
1 Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region (Ministry of Education), School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
2 School of Mathematics and Statistics, Nanning Normal University, Nanning 530023, China
Received: , Accepted: , Published:
Special Issues: Applications of delay differential equations in biology
References
1. J. H. Connell, The influence of interspecific competition and other factors on the distribution of the barnacle chthamalus stellatus, Ecology, 42 (1961), 710723.
2. P. K. Dayton, Competition, disturbance and community organisation; the provision and subsequent utilization of space in a rocky intertidal community, Ecol. Monogr., 41 (1971), 351389.
3. R. S. Miller, Pattern and process in competition, Adv. Ecol. Res., 4 (1967), 174.
4. F. G. Bader, J. S. Meyer, A. G. Fredrickson, H. M. Tsuchiya, Comments on microbial growth rate, Biotechnol. Bioeng., 17 (1975), 279283.
5. A. M. De Roos, J. A. J. Metz, L. Persson, Ontogenetic symmetry and asymmetry in energetics, J. Math. Biol., 66 (2013), 889914.
6. L. Persson, A. M. de Roos, Symmetry breaking in ecological systems through different energy efficiencies of juveniles and adults, Ecology, 94 (2013), 14871498.
7. D. Tilman, Resource competition and community structure, Monogr. Popul. Biol., 17 (1982), 1296.
8. K. Gopalsamy, Convergence in a resourcebased competition system, Bull. Math. Biol., 48 (1986), 681699.
9. H. D. Landahl, B. D. Hansen, A three stage population model with cannibalism, Bull. Math. Biol., 37 (1975), 1117.
10. P. J. Wangersky, W. J. Cunningham, On time lags in equations of growth, Proc. Natl. Acad. Sci. USA, 42 (1956), 699702.
11. P. J. Wangersky, W. J. Cunningham, Time lag in preypredator population models, Ecology, 38 (1957), 136139.
12. W. G. Aiello, H. I. Freedman, A timedelay model of singlespecies growth with stage structure, Math. Biosci., 101 (1990), 139153.
13. K. Gopalsamy, Time lags and global stability in twospecies competition, Bull. Math. Biol., 42 (1980), 729737.
14. R. Gambell, Birds and mammalsantarctic whales, in Antarctica (eds. W. Bonner and D. Walton), Pergamon Press, NewYork, (1985), 223241.
15. W. G. Aiello, H. I. Freedman, J. Wu, Analysis of a model representing stagestructured population growth with statedependent time delay, SIAM J. Appl. Math., 52 (1992), 855869.
16. J. F. M. AlOmari, S. A. Gourley, Stability and traveling fronts in LotkaVolterra competition models with stage structure, SIAM J. Appl. Math., 63 (2003), 20632086.
17. J. F. M. AlOmari, The effect of state dependent delay and harvesting on a stagestructured predatorprey model, Appl. Math. Comput., 271 (2015), 142153.
18. T. Cassidy, M. Craig, A. R. Humphries, Equivalences between age structured models and state dependent distributed delay differential equations, Math. Biosci. Eng., 16 (2019), 54195450.
19. F. Chen, D. Sun, J. Shi, Periodicity in a foodlimited population model with toxicants and state dependent delays, J. Math. Anal. Appl., 288 (2003), 136146.
20. Q. Hu, X.Q. Zhao, Global dynamics of a statedependent delay model with unimodal feedback, J. Math. Anal. Appl., 399 (2013), 133146.
21. M. Kloosterman, S. A. Campbell, F. J. Poulin, An NPZ model with statedependent delay due to sizestructure in juvenile zooplankton, SIAM J. Appl. Math., 76 (2016), 551577.
22. Y. Lv, Y. Pei, R. Yuan, Modeling and analysis of a predatorprey model with statedependent delay, Int. J. Biomath., 11 (2018), 1850026(122).
23. F. M. G. Magpantay, N. Kosovalic, An agestructured population model with statedependent delay: derivation and numerical integration, SIAM J. Numer. Anal., 52 (2014), 735756.
24. A. Rezounenko, Partial differential equations with discrete and distributed statedependent delays, J. Math. Anal. Appl., 326 (2007), 10311045.
25. L. Zhang, S. Guo, Slowly oscillating periodic solutions for the Nicholson's blowflies equation with statedependent delay, Math. Methods Appl. Sci., 145 (2017), 48934903.
26. Z. Zhou, Z. Yang, Periodic solutions in higherdimensional LotkaVolterra neutral competition systems with statedependent delays, Appl. Math. Comput., 189 (2007), 986995.
27. Y. Lv, R. Yuan, Y. Pei, T. Li, Global stability of a competitive model with statedependent delay, J. Dyn. Differ. Equ., 29 (2017), 501521.
28. Y. Wang, X. Liu, Y. Wei, Dynamics of a stagestructured single population model with statedependent delay, Adv. Differ. Equ., 2018 (2018), 364.
29. M. V. Barbarossa, K. P. Hadeler, C. Kuttler, Statedependent neutral delay equations from population dynamics, J. Math. Biol., 69 (2014), 10271056.
30. Y. Lou, X.Q. Zhao, A theoretical approach to understanding population dynamics with seasonal developmental durations, J. Nonlinear Sci., 27 (2017), 573603.
31. N. Macdonald, Biological Delay Systems: Linear Stability Theory, Cambridge University Press, New York, 1989.
32. J. M. Cushing, An Introduction to Structured Population Dynamics, Society for Industrial and Applied Mathematics, Philadephia, 1998.
33. G. F. Webb, Theory of Nonlinear Agedependent Population Dynamics, CRC Press, 1985.
34. K. L. Cooke, W. Z. Huang, On the problem of linearization for statedependent delay differential equations, Proc. Amer. Math. Soc., 124 (1996), 14171426.
35. X. Li, J. Wei, On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays, Chaos Soliton. Fract., 26 (2005), 519526.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)