Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Soft pre-rough sets and its applications in decision making

1 Department of Mathematics, College of Science and Arts, Najran University, Kingdom of Saudi Arabia
2 Department of Mathematics, Faculty of Science, Tanta University, Egypt

Special Issues: Optimization in decision making process

Soft rough set model represents a different mathematical model to which many real-life data can be connected. In fact, this theory represents a link between soft set and rough set theories. The main goal of the present paper is to introduce a new approach to modify and generalize soft rough sets. We are discussing and exploring the basic properties for these approaches. In addition, we use the suggested approaches as a mathematical modeling for an uncertain data and deal with the ambiguity. Comparisons among the proposed methods and the previous one are obtained. Finally, a medical application of the suggested approximations in decision making of diagnosis of COVID-19 is illustrated. Moreover, we develop an algorithm following these concepts and apply it to a decision making problem to demonstrate the applicability of the proposed methods.
  Figure/Table
  Supplementary
  Article Metrics

References

1. Z. Pawlak, Rough sets, Int. J. Inform. Computer Sci., 11 (1982), 341-356.

2. L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353.

3. D. A. Molodtsov, Soft set theory-first results, Computers Math. Appl., 37 (1999), 19-31.

4. E. A. Abo-Tabl, A comparison of two kinds of definitions of rough approximations based on a similarity relation, Inform. Sci., 181 (2011), 2587-2596.

5. K. Kin, J. Yang, Z. Pei, Generalized rough sets based on reflexive and transitive relations, Inform. Sci., 178 (2008), 4138-4141.

6. M. Kondo, On the structure of generalized rough sets, Inform. Sci., 176 (2006), 589-600.

7. Y. Y. Yao, Generalized rough set models, Rough Sets in Knowledge Discovery 1, L. Polkowski, A. Skowron (Eds.), Physica Verlag, Heidelberg (1998), 286-318.

8. A. A. Allam, M. Y., Bakeir, E. A., Abo-Tabl, New approach for basic rough set concepts. In: International workshop on rough sets, fuzzy sets, data mining, and granular computing, Lecture Notes in Artificial Intelligence, Springer, Regina, 3641 (2005), 64-73.

9. M. I. Ali, B. Davvaz, M. Shabir, Some properties of generalized rough sets, Inform. Sci., 224 (2013), 170-179.

10. A. A. Abo Khadra, B. M. Taher, M. K. El-Bably, Generalization of Pawlak approximation space, Proceeding of The International Conference on Mathematics: Trends and Developments, The Egyptian Mathematical Society, 3 (Cairo-2007), 335-346.

11. M. E. Abd El-Monsef, O. A. Embaby, M. K. El-Bably, Comparison between rough set approximations based on different topologies, Int. J. Granul. Comput. Rough Sets Intell. Systems, 3 (2014), 292-305.

12. M. El Sayed, Applications on simply alpha-approximation space based on simply alpha open sets, European J. Scient. Res., 120 2014), 7-14.

13. M. El Sayed, Generating simply approximation spaces by using decision tables, J. Comput. Theoret. Nanosci., 13 (2016), 7726-7730.

14. W. Zhu, Topological approaches to covering rough sets, Inform. Sci., 177 (2007), 1499-1508.

15. W. H. Xu, W. X. Zhang, Measuring roughness of generalized rough sets induced by a covering, Inform. Sci., 158 (2007), 2443-2455.

16. M. E. Abd El-Monsef, A. M. Kozae, M. K. El-Bably, On generalizing covering approximation space, J. Egyptian Math. Soc., 23 (2015), 535-545.

17. A. S. Nawar, M. K. El-Bably, A. A. El-Atik, Certain types of coverings based rough sets with application, J. Intell. Fuzzy Systems, (2020), (In press). DOI: 10.3233/JIFS-191542

18. M. Ali, H. Khan, L. H. Son, F. Smarandache, W. B. V. Kandasamy, New soft sets based class of linear algebraic codes, Symmetry, 10 (2018), 1-10.

19. N. Çağman, S. Enginoğlu, Soft matrix theory and its decision making, Comput. Math. Appl., 59 (2010), 3308-3314.

20. F. Karaaslan, Soft classes and soft rough classes with applications in decision making, Math. Probl. Eng., 2016, Article ID 1584528.

21. A. Kharal, B. Ahmad, Mappings on soft classes, New Math.Natural Comput., 7 (2011), 471-481.

22. S. Yuksel, T. Dizman, G. Yildizdan, U. Sert, Application of soft sets to diagnose the prostate cancer risk, J. Inequal. Appl., 229 (2013).

23. P. K. Maji, R. Roy, R. Biswas, An application of soft sets in decision making problem, Comput. Math. Appl., 44 (2002), 1077-1083.

24. Q. M. Sun, Z. L. Zhang, J. Liu, Soft sets and soft modules, Rough Sets Knowl. Technol., 5009 (2008), 403-409.

25. M. I. Ali, W. K. Mi, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547-1553.

26. M. I. Ali, A note on soft sets, rough soft sets and fuzzy soft sets, Appl. Soft Comput., 11 (2011), 3329-3332.

27. K. V. Babitha, J. J. Sunil, Soft topologies generated by soft set relations, Handbook Res. General. Hybrid Set Struct. Appl. Soft Comput., (2016), 118-126.

28. M. El-Sayed, M. K. El-Bably, Soft simply open set in soft topological space, J. Comput. Theor. Nanosci., 14 (2017), 4104-4113.

29. F. Karaaslan, N. Çağman, Bipolar soft rough sets and their applications in decision making, Afrika Matematika, 29 (2018), 823-839.

30. Y. Liu, K. Qin, L. Martínez, Improving decision making approaches based on fuzzy soft sets and rough soft sets, Appl. Soft Comput., 65 (2018), 320-332.

31. J. Zhan, B. Sun, Covering-based soft fuzzy rough theory and its application to multiple criteria decision making, Computat. Appl. Math., 38 (2019). DOI: 10.1007/s40314-019-0931-4

32. L. Zhang, J. Zhan, J. C. R. Alcantud, Novel classes of fuzzy soft β-coverings-based fuzzy rough sets with applications to multi-criteria fuzzy group decision making, Soft Comput., 23 (2019), 5327-5351.

33. S. K. Roy, S. Bera, Approximation of rough soft set and its application to lattice, Fuzzy Inform. Eng., 7 (2015), 379-387.

34. A. M. Khalil, S. G. Li, Y. Lin, H. X. Li, S. G. Ma, A new expert system in prediction of lung cancer disease based on fuzzy soft sets, Soft Comput., (2020). DOI: 10.1007/s00500-020-04787-x

35. M. El Sayed, Soft simply* generalized continuous mappings in soft topological space, J. Eng. Appl. Sci., 14 (2019), 3104-3112.

36. M. El Sayed, Some properties on soft simply star open sets in soft topological space, Nanosci. Nanotechnol. Letters, 12 (2020), 113-119.

37. F. Feng, X. Liu, V. Leoreanu-Fotea, Y. B. Jun, Soft sets and soft rough sets, Inform. Sci., 181 (2011), 1125-1137.

38. G. Kou, Y. Lu, Y. Peng, Y. Shi, Evaluation of classification algorithms using MCDM and rank correlation, Int. J. Inform. Technol. Decis. Mak., 11 (2012), 197-225.

39. C. Lin, G. Kou, Y. Peng, F. E. Alsaadi, Aggregation of the nearest consistency matrices with the acceptable consensus in AHP-GDM, Ann. Operat. Res., (2020), DOI: 0.31181/dmame2003001s

40. G. Kou, Y. Peng, G. Wang, Evaluation of clustering algorithms for financial risk analysis using MCDM methods, Inform. Sci., 275 (2014), 1-12.

41. G. Kou, C. Lin, A cosine maximization method for the priority vector derivation in AHP, European J. Operat. Res., 235 (2014), 225-232.

42. G. Kou, D. Ergu, Jennifer Shang, Enhancing data consistency in decision matrix: Adapting Hadamard model to mitigate judgment contradiction, European J. Operat. Res., 236 (2014), 261-271.

43. H. K. Sharma, K. Kumari, S. Kar, A rough set approach for forecasting models, Decis. Mak. Appl. Manag. Eng., 3 (2020), 1-21.

44. Z. Karavidic, D. Projovic, A multi-criteria decision-making (MCDM) model in the security forces operations based on rough sets, Decis. Mak. Appl. Manag. Eng., 1 (2018), 97-120.

45. F. Sinani, Z. Erceg, M. Vasiljevic, An evaluation of a third-party logistics provider: The application of the rough Dombi-Hamy mean operator, Decis. Mak. Appl. Manag. Eng., 3 (2020), 92-107.

46. P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589-602.

47. A. R. Roy, P. K. Maji, A fuzzy soft set theoretic approach to decision making problems, J. Appl. Math., 203 (2007), 412-418.

48. G. Kampf, D. Todt, S. Pfaender, E. Steinmann, Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents, J. Hospital Infect., 104 (2020), 246-251.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved