
Mathematical Biosciences and Engineering, 2020, 17(5): 60456063. doi: 10.3934/mbe.2020321
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Soft prerough sets and its applications in decision making
1 Department of Mathematics, College of Science and Arts, Najran University, Kingdom of Saudi Arabia
2 Department of Mathematics, Faculty of Science, Tanta University, Egypt
Received: , Accepted: , Published:
Special Issues: Optimization in decision making process
References
1. Z. Pawlak, Rough sets, Int. J. Inform. Computer Sci., 11 (1982), 341356.
2. L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338353.
3. D. A. Molodtsov, Soft set theoryfirst results, Computers Math. Appl., 37 (1999), 1931.
4. E. A. AboTabl, A comparison of two kinds of definitions of rough approximations based on a similarity relation, Inform. Sci., 181 (2011), 25872596.
5. K. Kin, J. Yang, Z. Pei, Generalized rough sets based on reflexive and transitive relations, Inform. Sci., 178 (2008), 41384141.
6. M. Kondo, On the structure of generalized rough sets, Inform. Sci., 176 (2006), 589600.
7. Y. Y. Yao, Generalized rough set models, Rough Sets in Knowledge Discovery 1, L. Polkowski, A. Skowron (Eds.), Physica Verlag, Heidelberg (1998), 286318.
8. A. A. Allam, M. Y., Bakeir, E. A., AboTabl, New approach for basic rough set concepts. In: International workshop on rough sets, fuzzy sets, data mining, and granular computing, Lecture Notes in Artificial Intelligence, Springer, Regina, 3641 (2005), 6473.
9. M. I. Ali, B. Davvaz, M. Shabir, Some properties of generalized rough sets, Inform. Sci., 224 (2013), 170179.
10. A. A. Abo Khadra, B. M. Taher, M. K. ElBably, Generalization of Pawlak approximation space, Proceeding of The International Conference on Mathematics: Trends and Developments, The Egyptian Mathematical Society, 3 (Cairo2007), 335346.
11. M. E. Abd ElMonsef, O. A. Embaby, M. K. ElBably, Comparison between rough set approximations based on different topologies, Int. J. Granul. Comput. Rough Sets Intell. Systems, 3 (2014), 292305.
12. M. El Sayed, Applications on simply alphaapproximation space based on simply alpha open sets, European J. Scient. Res., 120 2014), 714.
13. M. El Sayed, Generating simply approximation spaces by using decision tables, J. Comput. Theoret. Nanosci., 13 (2016), 77267730.
14. W. Zhu, Topological approaches to covering rough sets, Inform. Sci., 177 (2007), 14991508.
15. W. H. Xu, W. X. Zhang, Measuring roughness of generalized rough sets induced by a covering, Inform. Sci., 158 (2007), 24432455.
16. M. E. Abd ElMonsef, A. M. Kozae, M. K. ElBably, On generalizing covering approximation space, J. Egyptian Math. Soc., 23 (2015), 535545.
17. A. S. Nawar, M. K. ElBably, A. A. ElAtik, Certain types of coverings based rough sets with application, J. Intell. Fuzzy Systems, (2020), (In press). DOI: 10.3233/JIFS191542
18. M. Ali, H. Khan, L. H. Son, F. Smarandache, W. B. V. Kandasamy, New soft sets based class of linear algebraic codes, Symmetry, 10 (2018), 110.
19. N. Çağman, S. Enginoğlu, Soft matrix theory and its decision making, Comput. Math. Appl., 59 (2010), 33083314.
20. F. Karaaslan, Soft classes and soft rough classes with applications in decision making, Math. Probl. Eng., 2016, Article ID 1584528.
21. A. Kharal, B. Ahmad, Mappings on soft classes, New Math.Natural Comput., 7 (2011), 471481.
22. S. Yuksel, T. Dizman, G. Yildizdan, U. Sert, Application of soft sets to diagnose the prostate cancer risk, J. Inequal. Appl., 229 (2013).
23. P. K. Maji, R. Roy, R. Biswas, An application of soft sets in decision making problem, Comput. Math. Appl., 44 (2002), 10771083.
24. Q. M. Sun, Z. L. Zhang, J. Liu, Soft sets and soft modules, Rough Sets Knowl. Technol., 5009 (2008), 403409.
25. M. I. Ali, W. K. Mi, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 15471553.
26. M. I. Ali, A note on soft sets, rough soft sets and fuzzy soft sets, Appl. Soft Comput., 11 (2011), 33293332.
27. K. V. Babitha, J. J. Sunil, Soft topologies generated by soft set relations, Handbook Res. General. Hybrid Set Struct. Appl. Soft Comput., (2016), 118126.
28. M. ElSayed, M. K. ElBably, Soft simply open set in soft topological space, J. Comput. Theor. Nanosci., 14 (2017), 41044113.
29. F. Karaaslan, N. Çağman, Bipolar soft rough sets and their applications in decision making, Afrika Matematika, 29 (2018), 823839.
30. Y. Liu, K. Qin, L. Martínez, Improving decision making approaches based on fuzzy soft sets and rough soft sets, Appl. Soft Comput., 65 (2018), 320332.
31. J. Zhan, B. Sun, Coveringbased soft fuzzy rough theory and its application to multiple criteria decision making, Computat. Appl. Math., 38 (2019). DOI: 10.1007/s4031401909314
32. L. Zhang, J. Zhan, J. C. R. Alcantud, Novel classes of fuzzy soft βcoveringsbased fuzzy rough sets with applications to multicriteria fuzzy group decision making, Soft Comput., 23 (2019), 53275351.
33. S. K. Roy, S. Bera, Approximation of rough soft set and its application to lattice, Fuzzy Inform. Eng., 7 (2015), 379387.
34. A. M. Khalil, S. G. Li, Y. Lin, H. X. Li, S. G. Ma, A new expert system in prediction of lung cancer disease based on fuzzy soft sets, Soft Comput., (2020). DOI: 10.1007/s0050002004787x
35. M. El Sayed, Soft simply* generalized continuous mappings in soft topological space, J. Eng. Appl. Sci., 14 (2019), 31043112.
36. M. El Sayed, Some properties on soft simply star open sets in soft topological space, Nanosci. Nanotechnol. Letters, 12 (2020), 113119.
37. F. Feng, X. Liu, V. LeoreanuFotea, Y. B. Jun, Soft sets and soft rough sets, Inform. Sci., 181 (2011), 11251137.
38. G. Kou, Y. Lu, Y. Peng, Y. Shi, Evaluation of classification algorithms using MCDM and rank correlation, Int. J. Inform. Technol. Decis. Mak., 11 (2012), 197225.
39. C. Lin, G. Kou, Y. Peng, F. E. Alsaadi, Aggregation of the nearest consistency matrices with the acceptable consensus in AHPGDM, Ann. Operat. Res., (2020), DOI: 0.31181/dmame2003001s
40. G. Kou, Y. Peng, G. Wang, Evaluation of clustering algorithms for financial risk analysis using MCDM methods, Inform. Sci., 275 (2014), 112.
41. G. Kou, C. Lin, A cosine maximization method for the priority vector derivation in AHP, European J. Operat. Res., 235 (2014), 225232.
42. G. Kou, D. Ergu, Jennifer Shang, Enhancing data consistency in decision matrix: Adapting Hadamard model to mitigate judgment contradiction, European J. Operat. Res., 236 (2014), 261271.
43. H. K. Sharma, K. Kumari, S. Kar, A rough set approach for forecasting models, Decis. Mak. Appl. Manag. Eng., 3 (2020), 121.
44. Z. Karavidic, D. Projovic, A multicriteria decisionmaking (MCDM) model in the security forces operations based on rough sets, Decis. Mak. Appl. Manag. Eng., 1 (2018), 97120.
45. F. Sinani, Z. Erceg, M. Vasiljevic, An evaluation of a thirdparty logistics provider: The application of the rough DombiHamy mean operator, Decis. Mak. Appl. Manag. Eng., 3 (2020), 92107.
46. P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589602.
47. A. R. Roy, P. K. Maji, A fuzzy soft set theoretic approach to decision making problems, J. Appl. Math., 203 (2007), 412418.
48. G. Kampf, D. Todt, S. Pfaender, E. Steinmann, Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents, J. Hospital Infect., 104 (2020), 246251.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)