Loading [Contrib]/a11y/accessibility-menu.js
Research article Special Issues

TOPSIS-based entropy measure for intuitionistic trapezoidal fuzzy sets and application to multi-attribute decision making

  • As an extension of intuitionistic fuzzy numbers, intuitionistic trapezoidal fuzzy numbers (ITrFNs) are useful in expressing complex fuzzy information with an 'interval value'. This study focuses on multi-attribute decision-making (MADM) problems with unknown attribute weights under an ITrFN environment. We initially present an entropy measure for ITrFNs by using the relative closeness of technique for order preference by similarity to an ideal solution. From the view of the reliability and certainty of decision data, we present an approach to determine the attribute weights. Subsequently, a new method to solve intuitionistic trapezoidal fuzzy MADM problems with unknown attribute weight information is proposed. A numerical example is provided to verify the practicality and effectiveness of the proposed method.

    Citation: Yefu Zheng, Jun Xu, Hongzhang Chen. TOPSIS-based entropy measure for intuitionistic trapezoidal fuzzy sets and application to multi-attribute decision making[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5604-5617. doi: 10.3934/mbe.2020301

    Related Papers:

    [1] Fankang Bu, Jun He, Haorun Li, Qiang Fu . Interval-valued intuitionistic fuzzy MADM method based on TOPSIS and grey correlation analysis. Mathematical Biosciences and Engineering, 2020, 17(5): 5584-5603. doi: 10.3934/mbe.2020300
    [2] Haiping Ren, Laijun Luo . A novel distance of intuitionistic trapezoidal fuzzy numbers and its-based prospect theory algorithm in multi-attribute decision making model. Mathematical Biosciences and Engineering, 2020, 17(4): 2905-2922. doi: 10.3934/mbe.2020163
    [3] Yongfeng Yin, Routing Zhang, Qingran Su . Threat assessment of aerial targets based on improved GRA-TOPSIS method and three-way decisions. Mathematical Biosciences and Engineering, 2023, 20(7): 13250-13266. doi: 10.3934/mbe.2023591
    [4] Muhammad Akram, G. Muhiuddin, Gustavo Santos-García . An enhanced VIKOR method for multi-criteria group decision-making with complex Fermatean fuzzy sets. Mathematical Biosciences and Engineering, 2022, 19(7): 7201-7231. doi: 10.3934/mbe.2022340
    [5] Han Wu, Junwu Wang, Sen Liu, Tingyou Yang . Research on decision-making of emergency plan for waterlogging disaster in subway station project based on linguistic intuitionistic fuzzy set and TOPSIS. Mathematical Biosciences and Engineering, 2020, 17(5): 4825-4851. doi: 10.3934/mbe.2020263
    [6] Nian Zhang, Yifan Zhou, Qiang Pan, Guiwu Wei . Multi-attribute decision-making method with triangular fuzzy numbers based on regret theory and the catastrophe progression method. Mathematical Biosciences and Engineering, 2022, 19(12): 12013-12030. doi: 10.3934/mbe.2022559
    [7] Qiwen Wang, Guibao Song, Xiuxia Yang . Mixed-attitude three-way decision model for aerial targets: Threat assessment based on IF-VIKOR-GRA method. Mathematical Biosciences and Engineering, 2023, 20(12): 21514-21536. doi: 10.3934/mbe.2023952
    [8] Nian Zhang, Xue Yuan, Jin Liu, Guiwu Wei . Stochastic multiple attribute decision making with Pythagorean hesitant fuzzy set based on regret theory. Mathematical Biosciences and Engineering, 2023, 20(7): 12562-12578. doi: 10.3934/mbe.2023559
    [9] Yuting Zhu, Wenyu Zhang, Junjie Hou, Hainan Wang, Tingting Wang, Haining Wang . The large-scale group consensus multi-attribute decision-making method based on probabilistic dual hesitant fuzzy sets. Mathematical Biosciences and Engineering, 2024, 21(3): 3944-3966. doi: 10.3934/mbe.2024175
    [10] Sumera Naz, Muhammad Akram, Mohammed M. Ali Al-Shamiri, Mohammed M. Khalaf, Gohar Yousaf . A new MAGDM method with 2-tuple linguistic bipolar fuzzy Heronian mean operators. Mathematical Biosciences and Engineering, 2022, 19(4): 3843-3878. doi: 10.3934/mbe.2022177
  • As an extension of intuitionistic fuzzy numbers, intuitionistic trapezoidal fuzzy numbers (ITrFNs) are useful in expressing complex fuzzy information with an 'interval value'. This study focuses on multi-attribute decision-making (MADM) problems with unknown attribute weights under an ITrFN environment. We initially present an entropy measure for ITrFNs by using the relative closeness of technique for order preference by similarity to an ideal solution. From the view of the reliability and certainty of decision data, we present an approach to determine the attribute weights. Subsequently, a new method to solve intuitionistic trapezoidal fuzzy MADM problems with unknown attribute weight information is proposed. A numerical example is provided to verify the practicality and effectiveness of the proposed method.




    [1] A. Si, S. Das, S. Kar, An approach to rank picture fuzzy numbers for decision making problems, Decis. Making Appl. Manage. Eng., 2 (2019), 54-64.
    [2] I. Petrovic, M. Kankaras, A hybridized IT2FS-DEMATEL-AHP-TOPSIS multi-criteria decision making approach: Case study of selection and evaluation of criteria for determination of air traffic control radar position, Decis. Making Appl. Manage. Eng., 3 (2020), 146-164.
    [3] S. Biswas, G. Bandyopadhyay, B. Guha, & M. Bhattacharjee, An ensemble approach for portfolio selection in a multi-criteria decision making framework, Decis. Making Appl. Manage. Eng., 2 (2019), 138-158.
    [4] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96.
    [5] K. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets Syst., 31 (1989), 343-349.
    [6] H. Garg, K. Kumar, A novel exponential distance and its based TOPSIS method for interval-valued intuitionistic fuzzy sets using connection number of SPA theory, Artif. Intell. Rev., 1 (2020), 595-624.
    [7] K. Kumar, H. Garg, Connection number of set pair analysis based TOPSIS method on intuitionistic fuzzy sets and their application to decision making, Appl. Intell., 48 (2018), 2112-2119.
    [8] K. Kumar, H. Garg, TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment, Comput. Appl. Math., 37 (2018), 1319-1329.
    [9] H. Garg, K. Kumar, An extended technique for order preference by similarity to ideal solution group decision-making method with linguistic interval-valued intuitionistic fuzzy information, J. Multi. Crite. Decis. Anal., 26 (2019), 16-26.
    [10] P. Burillo, H. Bustince, Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets, Fuzzy Sets Syst., 118 (1996), 305-316.
    [11] E. Szmidt, J. Kacprzyk, Entropy for intuitionistic fuzzy sets, Fuzzy Sets Syst., 118 (2001), 467-477.
    [12] T. Y. Chen, C. H. Li, Determing objective weights with intuitionistic fuzzy entropy measures: A comparative analysis, Inf. Sci., 180 (2010), 4207-4222.
    [13] Q. S. Zhang, H. Y. Xing, F. C. Liu, J. Ye, P. Tang, Some new entropy measures for interval-valued intuitionistic fuzzy sets based on distances and their relationships with similarity and inclusion measures, Inf. Sci., 283 (2014), 55-69.
    [14] A. De Luca, S. Termini, A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory, Inf. Control, 20 (1972), 301-312.
    [15] R. Joshi, S. Kumar, Parametric (R, S)-norm entropy on intuitionistic fuzzy sets with a new approach in multiple attribute decision making, Fuzzy Inf. Eng., 9 (2019), 181-203.
    [16] F. Liu, X. H. Yuan, Fuzzy number intuitionistic fuzzy set, Fuzzy Syst. Math., 21 (2007), 88-91.
    [17] M. H. Shu, C. H. Cheng, J. R. Dong, Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly, Microelectron. Reliab., 46 (2006), 2139-2148.
    [18] X. F. Wang, Fuzzy number intuitionistic fuzzy geometric aggregation operators and their application to decision making, Control Decis., 10 (2008), 104-111.
    [19] G. W. Wei, Induced fuzzy number intuitionistic fuzzy ordered weighted averaging (I-FIFOWA) operator and its application to group decision making, Chin. Jou. Manage., 7 (2010), 903-908.
    [20] Y. Gao, D. Q. Zhou, C. C. Liu, L. Zhang, Triangular fuzzy number intuitionistic fuzzy aggregation operators and their application based on interaction, Syst. Eng. Theory Prac., 32 (2012), 1964-1972.
    [21] Shan, Yu, Z. S. Xu, Aggregation and decision making using intuitionistic multiplicative triangular fuzzy information, J. Syst. Sci. Syst. Eng., 23 (2014), 20-38.
    [22] C. L. Hwang, K. Yoon, Multiple attributes decision making methods and applications, Berlin Heidelberg: Springer, (1981).
    [23] X. C. Liu, Entropy, distance measure and similarity measure of fuzzy sets and their relations, Fuzzy Sets Syst., 52 (1992), 305-318.
    [24] H. Y. Zhang, W. X. Zhang, C. L. Mei, Entropy of interval-valued fuzzy sets based on distance and its relationship with similarity measure, Knowledge-Based Syst., 22 (2009), 449-454.
    [25] H. Garg, Intuitionistic fuzzy Hamacher aggregation operators with entropy weight and their applications to multi-criteria decision-making problems, Iran. J. Sci. Technol.-Trans. Electr. Eng., 43 (2019), 597-613.
    [26] H. Garg, Generalized intuitionistic fuzzy entropy-based approach for solving multi-attribute decision-making problems with unknown attribute weights, Proc. Natl. Acad. Sci. ndia Sect. A, 89 (2019), 129-139.
    [27] X. W. Qi, C. Y. Liang, J. L. Zhang, Generalized cross-entropy based group decision making with unknown expert and attribute weights under interval-valued intuitionistic fuzzy environment, Comput. Ind. Eng., 79 (2015), 52-64.
    [28] H. Garg, K. Kumar, Linguistic interval-valued Atanassov intuitionistic fuzzy sets and their applications to group decision-making problems, IEEE Trans. Fuzzy Syst., 27 (2019), 2302-2311.
    [29] H. Zhang, G. Kou, Y. Peng, Soft consensus cost models for group decision making and economic interpretations, Eur. J. Oper. Res., 277 (2019), 964-980.
    [30] G. Kou, P. Yang, Y. Peng, F. Xiao, Y. Chen, F. E. Alsaadi, Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision-making methods, Appl. Soft Comput., 86 (2020), 105836.
    [31] G. Kou, Y. Peng, G. Wang, Evaluation of clustering algorithms for financial risk analysis using MCDM methods, Inf. Sci., 275 (2014), 1-12.
  • This article has been cited by:

    1. Benjamin Werner, David Dingli, Tom Lenaerts, Jorge M. Pacheco, Arne Traulsen, Natalia L. Komarova, Dynamics of Mutant Cells in Hierarchical Organized Tissues, 2011, 7, 1553-7358, e1002290, 10.1371/journal.pcbi.1002290
    2. Evgeniy Khain, Mark Katakowski, Nicholas Charteris, Feng Jiang, Michael Chopp, Migration of adhesive glioma cells: Front propagation and fingering, 2012, 86, 1539-3755, 10.1103/PhysRevE.86.011904
    3. Stefan Burén, Ana L. Gomes, Ana Teijeiro, Mohamad-Ali Fawal, Mahmut Yilmaz, Krishna S. Tummala, Manuel Perez, Manuel Rodriguez-Justo, Ramón Campos-Olivas, Diego Megías, Nabil Djouder, Regulation of OGT by URI in Response to Glucose Confers c-MYC-Dependent Survival Mechanisms, 2016, 30, 15356108, 290, 10.1016/j.ccell.2016.06.023
    4. Peng Feng, Zhewei Dai, Dorothy Wallace, On a 2D Model of Avascular Tumor with Weak Allee Effect, 2019, 2019, 1110-757X, 1, 10.1155/2019/9581072
    5. Marta Panuszewska, Bartosz Minch, Rafał Wcisło, Witold Dzwinel, 2018, Chapter 4, 978-3-319-98653-1, 42, 10.1007/978-3-319-99813-8_4
    6. Hang Xie, Yang Jiao, Qihui Fan, Miaomiao Hai, Jiaen Yang, Zhijian Hu, Yue Yang, Jianwei Shuai, Guo Chen, Ruchuan Liu, Liyu Liu, Nils Cordes, Modeling three-dimensional invasive solid tumor growth in heterogeneous microenvironment under chemotherapy, 2018, 13, 1932-6203, e0206292, 10.1371/journal.pone.0206292
    7. Alexei T. Skvortsov, Alexander M. Berezhkovskii, Leonardo Dagdug, Trapping of diffusing particles by spiky absorbers, 2018, 148, 0021-9606, 084103, 10.1063/1.5011060
    8. Woo Kyung Moon, Hong-Hao Chen, Sung Ui Shin, Wonshik Han, Ruey-Feng Chang, Evaluation of TP53/PIK3CA mutations using texture and morphology analysis on breast MRI, 2019, 63, 0730725X, 60, 10.1016/j.mri.2019.08.026
    9. Shannon M. Mumenthaler, Jasmine Foo, Nathan C. Choi, Nicholas Heise, Kevin Leder, David B. Agus, William Pao, Franziska Michor, Parag Mallick, The Impact of Microenvironmental Heterogeneity on the Evolution of Drug Resistance in Cancer Cells, 2015, 14s4, 1176-9351, CIN.S19338, 10.4137/CIN.S19338
    10. Jan Poleszczuk, Paul Macklin, Heiko Enderling, 2016, Chapter 346, 978-1-4939-6549-6, 335, 10.1007/7651_2016_346
    11. Youness Azimzade, Abbas Ali Saberi, Muhammad Sahimi, Role of the Interplay Between the Internal and External Conditions in Invasive Behavior of Tumors, 2018, 8, 2045-2322, 10.1038/s41598-018-24418-8
    12. Philip Gerlee, Eunjung Kim, Alexander R.A. Anderson, Bridging scales in cancer progression: Mapping genotype to phenotype using neural networks, 2015, 30, 1044579X, 30, 10.1016/j.semcancer.2014.04.013
    13. B C Rothwell, N F Kirkby, M J Merchant, A L Chadwick, M Lowe, R I Mackay, J H Hendry, K J Kirkby, Determining the parameter space for effective oxygen depletion for FLASH radiation therapy, 2021, 66, 0031-9155, 055020, 10.1088/1361-6560/abe2ea
    14. Vipin Narang, James Decraene, Shek-Yoon Wong, Bindu S. Aiswarya, Andrew R. Wasem, Shiang Rong Leong, Alexandre Gouaillard, Systems immunology: a survey of modeling formalisms, applications and simulation tools, 2012, 53, 0257-277X, 251, 10.1007/s12026-012-8305-7
    15. Elisabeth G. Rens, Mathé T. Zeegers, Iraes Rabbers, András Szabó, Roeland M. H. Merks, Autocrine inhibition of cell motility can drive epithelial branching morphogenesis in the absence of growth, 2020, 375, 0962-8436, 20190386, 10.1098/rstb.2019.0386
    16. Xun Cheng, Shichuan Chang, Bujuan Zhang, Xianqin Luo, Hui Rao, Roozbeh Sabetvand, Davood Toghraie, Investigation the change in the atomic stability of 3DN5 and 5OTF (cancer cells and microvascular cells) structures by increasing initial pressure: A molecular dynamics approach, 2023, 301, 02540584, 127555, 10.1016/j.matchemphys.2023.127555
    17. Chien-Han Yen, Yi-Chieh Lai, Kuo-An Wu, Morphological instability of solid tumors in a nutrient-deficient environment, 2023, 107, 2470-0045, 10.1103/PhysRevE.107.054405
    18. Dariusz Szukiewicz, CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis, 2024, 25, 1422-0067, 4679, 10.3390/ijms25094679
    19. M. I. Romero Rodríguez, J. C. Vargas Pino, E. L. Sierra-Ballén, Tumor Growth, Proliferation and Diffusion in Osteosarcoma, 2025, 73, 0001-5342, 10.1007/s10441-025-09494-4
    20. Parvathy Rema, Aravind Ramesh, Murali Appukuttan, B.R Manju, Prediction of metastatic potential of heterogeneous pancreatic ductal adenocarcinoma through gradient-based algorithms, 2025, 14243903, 10.1016/j.pan.2025.06.017
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4931) PDF downloads(277) Cited by(15)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog