Citation: Andrew Vlasic, Troy Day. Poisson integral type quarantine in a stochastic SIR system[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5534-5544. doi: 10.3934/mbe.2020297
[1] | F. Rao, W. Wang, Z. Li, Stability analysis of an epidemic model with diffusion and stochastic perturbation, Comm. Nonlinear Sci. Num. Simul., 17 (2012), 2551-2563. |
[2] | E. Tornatore, S. Buccellato, P. Vetro, Stability of a stochastic SIR system, Phys. A, 354 (2005), 111-126. |
[3] | R. Kuske, L. F. Gordillo, P. Greenwood, Sustained oscillations via coherence resonance in SIR, J. Theor. Biol., 245 (2007), 459-469. |
[4] | J. Yu, D. Jiang, N. Shi, Globaly stability of the two-group SIR model with random perturbation, J. Math. Anal. App., 360 (2009), 235-244. |
[5] | A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, Stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876-902. |
[6] | Q. Liu, D. Jiang, T. Hayat, B. Ahmad, Analysis of a delayed vaccinated SIR epidemic model with temporary immunity and Lévy jumps, Nonlinear Anal. Hybrid Sys., 27 (2018), 29-43. |
[7] | X. Zhang, K. Wang, Stochastic SIR model with jumps, Appl. Math. Letters, 26 (2013), 867-874. |
[8] | Y. Zhou, W. Zhang, Threshold of a stochastic SIR epidemic model with Lévy jumps, Phys. A, 446 (2016), 204-216. |
[9] | A. Vlasic, D. Troy, Modeling stochastic anomalies in an SIS system, Stoch. Anal. App., 35 (2017), 27-39. |
[10] | H. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (200), 599-653. |
[11] | D. Applebaum, Lévy processes and stochastic calculus, 2^{nd} edition, Cambridge Studies in Advanced Mathematics, Cambridge, 2004. |
[12] | K. Sato, Lévy Processes and Infinitely Divisible Distributions, 1^{st} edition, Cambridge University Press, Cambridge, 1999. |
[13] | J. Bertoin, Lévy Processes, 1^{st} edition, Cambridge University Press, Cambridge, 1996. |
[14] | E. Tornatore, S. Buccellato, On a stochastic SIR model, Appl. Math. (Warsaw), 34 (2007), 389-400. |
[15] | Q. Lu, Stability of SIR system with random perturbations, Phys. A, 388 (2009), 3677-3686. |
[16] | C. Ji, D. Ji, N. Shi, The behavior of an SIR epidemic model with stochastic perturbation, Stoch. Anal. App., 30 (2012), 755-773. |
[17] | G. Chen, T. Li, Ch. Liu, Lyapunov exponent of a stochastic SIR model, Comptes Rendus Math., 351 (2013), 33-35. |
[18] | J. Calatayud, J. C. Cortés, M. Jornet, Computing the density function of complex models with randomness by using polynomial expansions and the RVT technique. Application to the SIR epidemic model, Chaos Solit. Fract., 133 (2020), 109639. https://doi.org/10.1016/j.chaos.2020.109639. |
[19] | J. C. Cortés, S. K. El-Labany, A. Navarro-Quiles, M. M. Selim, H. Slama, A comprehensive probabilistic analysis of SIR-type epidemiological models based on full randomized DiscreteTime Markov Chain formulation with applications, Math. Methods Appl. Sci., (2020), https://doi.org/10.1002/mma.6482. |
[20] | S. P. Meyn, R. L. Tweedie, Stability of Markovian processes Ⅲ: Foster-Lyapunov criteria for continuous-time processes, Adv. Appl. Prob., 25 (1993), 518-548. |
[21] | I. Gihman, A. V. Skorohod, Stochastic differential equations, 2^{nd} edition, Springer-Verlag, New York, 1972. |
[22] | D. Down, S. P. Meyn, R. L. Tweedie, Exponential and uniform ergodicity of Markov Processes, Ann.Appl. Prob., 23 (1995), 1671-1691. |
[23] | A. V. Skorohod, Asymptotic Methods in the Theory of Stochastic Differential Equations, 1^{st} edition, American Mathematical Society, Moscow, 1989. |
[24] | X. Mao, Stochastic Differential Equations and Applications, 1^{st} edition, Horwood, Chichester, 2007. |