Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay

College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China

Special Issues: Applications of delay differential equations in biology

A HIV virus-to-cell dynamical model with distributed delay and Beddington-DeAngelis functional response is proposed in this paper. Using the characteristic equations and analytical means, the principle reproduction number R0 on the local stability of infection-free and chronic-infection equilibria is established. Furthermore, by constructing suitable Lyapunov functionals and using LaSalle invariance principle, we show that if R0 ≤ 1 the infection-free equilibrium is globally asymptotically stable, while if R0 > 1 the chronic-infection equilibrium is globally asymptotically stable. Numerical simulations are presented to illustrate the theoretical results. Comparing the effects between discrete and distributed delays on the stability of HIV virus-to-cell dynamical models, we can see that they could be same and different even opposite.
  Article Metrics


1. D. D. Richman, D. M. Margolis, M. Delaney, W. C. Greene, D. Hazuda, R. J. Pomerantz, The challenge of finding a cure for HIV infection, Science, 323 (2009), 1304-1307.

2. V. Leonenko, G. Bobashev, Analyzing influenza outbreaks in Russia using an age-structured dynamic transmission model, Epidemics, 29 (2019), 100-358.

3. Y. Cai, K. Wang, W. Wang, Global transmission dynamics of a Zika virus model, Appl. Math. Lett., 92 (2019), 190-195.

4. Y. Cai, Z. Ding, B. Yang, Z. Peng, W. Wang, Transmission dynamics of Zika virus with spatial structure-A case study in Rio de Janeiro, Brazil, Physica A: Stat. Mech. Appl., 514 (2019), 729-740.

5. E. Grigorieva, E. Khailov, Determination of the opimal controls for an Ebola epidemic model, Disc. Cont. Dynam. Syst. S., 11 (2018), 1071-1101.

6. J. Huang, S. Ruan, X. Wu, X. Zhou, Seasonal transmission dynamics of measles in China, Theor. Biosci., 137 (2018), 185-195.

7. T. Zhang, X. Zhao, Mathematical modeling for schistosomiasis with seasonal influence: A case study in Hubei, China, SIAM J. Appl. Dyn. Syst., 19 (2020), 1438-1471.

8. M. A. Nowak, C. R. M. Bangham, Population dynamics of immune responses to persistent virus, Science, 272 (1996), 74-79.

9. R. M. Anderson, R. M. May, The population dynamics of microparasites and their invertebrate hosts, Philos. Trans. R. Soc. Lond. Ser. B, 291 (1981), 451-524.

10. A. S. Perelson, P. W. Nelson, Mathematical analysis of HIV-I: dynamics in vivo, SIAM Rev., 41 (1999), 3-44.

11. X. Lai, X. Zou, Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission, SIAM J. Appl. Math., 74 (2014), 898-917.

12. A. L. Hill, D. I. Rosenbloom, M. A. Nowak, R. F. Siliciano, Insight into treatment of HIV infection from viral dynamics models, Immun. Rev., 285 (2018), 9-25.

13. P. Aavani, L. S. Allen, The role of CD4 T cells in immune system activation and viral reproduction in a simple model for HIV infection, Appl. Math. Model., 75 (2019), 210-222.

14. D. Olabode, L. Rong, X. Wang, Optimal control in HIV chemotherapy with termination viral load and latent reservoir, Math. Biosci. Eng., 16 (2018), 619-635.

15. X. Wang, L. Rong, HIV low viral load persistence under treatment: Insights from a model of cell-to-cell viral transmission, Appl. Math. Lett., 94 (2019), 44-51.

16. P. W. Nelson, A.S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179 (2002), 73-94.

17. R. Xu, Global stability of an HIV-1 infection model with saturation infection and intracellular delay, J. Math. Anal. Appl., 375 (2011), 75-81.

18. J. Lin, R. Xu, X, Tian, Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity, Appl. Math. Comput., 315 (2017), 516-530.

19. G. Huang, W. Ma, Y. Takeuchi, Global properties for virus dynamics model with BeddingtonDeAngelis functional response, Appl. Math. Lett., 22 (2009), 1690-1693.

20. G. Huang, W. Ma, Y. Takeuchi, Global analysis for delay virus dynamics model with BeddingtonDeAngelis functional response, Appl. Math. Lett., 24 (2011), 1199-1203.

21. Y. Nakata, Global dynamics of a viral infection model with a latent period and beddingtonDeAngelis response, Nonlinear Anal. TMA, 74 (2011), 2929-2940.

22. H. Xiang, L. Feng, H. Huo, Stability of the virus dynamics model with Beddington-DeAngelis functional response and delays, Appl. Math. Model., 37 (2013), 5414-5423.

23. R. Xu, Global dynamics of an HIV-1 infection model with distributed intracellular delays, Comput. Math. Appl., 61 (2011), 2799-2805.

24. J. Wang, M. Guo, X. Liu, Z. Zhao, Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay, Appl. Math. Comput., 291 (2016), 149-161.

25. Y. Nakata, Global dynamics of a cell mediated immunity in viral infection models with distributed delays, J. Math. Anal. Appl., 375 (2011), 14-27.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved