Citation: Fernando Saldaña, Hugo Flores-Arguedas, José Ariel Camacho-Gutiérrez, Ignacio Barradas. Modeling the transmission dynamics and the impact of the control interventions for the COVID-19 epidemic outbreak[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 4165-4183. doi: 10.3934/mbe.2020231
[1] | H. A. Rothan, S. N. Byrareddy, The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak, J. Autoimmun., (2020), 102433. |
[2] | World Health Organization, Coronavirus disease 2019 (COVID-19): situation report-51, 2020. Available from: https://www.who.int/docs/default-source/coronaviruse/situationreports/20200311-sitrep-51-COVID-19.pdf. |
[3] | World Health Organization, Assessment of risk factors for coronavirus disease 2019 (COVID-19) in health workers: protocol for a case-control study, 26 May 2020. Available from: https://www.who.int/publications/i/item/assessment-of-risk-factors-for-coronavirus-disease-2019-(COVID-19)-in-health-workers-protocol-for-a-case-control-study |
[4] | A. Teslya, T. M. Pham, N. E. Godijk, M. E. Kretzschmar, M. C. Bootsma, G. Rozhnova, Impact of self-imposed prevention measures and short-term government intervention on mitigating and delaying a COVID-19 epidemic, medRxiv, (2020), 2020.03.12.20034827. |
[5] | F. Brauer, Mathematical epidemiology: Past, present, and future, Infect. Dis. Model., 2 (2017), 113-127. |
[6] | J. Jia, J. Ding, S. Liu, G. Liao, J. Li, B. Duan, et al., Modeling the control of COVID-19: Impact of policy interventions and meteorological factors, arXiv, (2020), 2003.02985. |
[7] | S. S. Nadim, I. Ghosh, J. Chattopadhyay, Short-term predictions and prevention strategies for COVID-2019: A model based study, arXiv, (2020), 2003.08150. |
[8] | B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the transmission risk of the 2019-ncov and its implication for public health interventions, J. Clin. Med., 9 (2020), 462. |
[9] | C. Yang, J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math. Biosci. Eng., 17 (2020), 2708-2724. |
[10] | Y. Liu, A. A. Gayle, A. Wilder-Smith, J. Rocklöv, The reproductive number of COVID-19 is higher compared to SARS coronavirus, J. Travel. Med., 27 (2020), taaa021. |
[11] | G. Kampf, D. Todt, S. Pfaender, E. Steinmann, Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents, J. Hosp. Infect., 104 (2020), 246-251. |
[12] | H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev. Soc. Ind. Appl. Math., 42 (2000), 599-653. |
[13] | O. Diekmann, J. A. P. Heesterbeek, J. A. Metz, On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. |
[14] | P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. |
[15] | J. A. Backer, D. Klinkenberg, J. Wallinga, Incubation period of 2019 novel coronavirus (2019-ncov) infections among travellers from Wuhan, China, 20-28 january 2020, Euro. Surveil., 25 (2020), 2000062. |
[16] | Secretary of Health, Aviso epidemiológico: casos de infección respiratoria asociados a nuevo-coronavirus-2019-ncov, 2020. Available from: https://www.gob.mx/salud/documentos/avisoepidemiologico-casos-de-infeccion-respiratoria-asociados-a-nuevo-coronavirus-2019-ncov. |
[17] | J. A. Christen, C. Fox, A general purpose sampling algorithm for continuous distributions (the t-walk), Bayesian Anal., 5 (2010), 263-281. |
[18] | El Financiero, Al 10% de los casos sospechosos de COVID-19 con síntomas leves se les aplica prueba: Imss, 2020. Available from: https://www.elfinanciero.com.mx/nacional/al-10-de-loscasos-sospechosos-de-covid-19-con-sintomas-leves-se-les-aplica-prueba-imss. |
[19] | E. Shim, A. Tariq, W. Choi, Y. Lee, G. Chowell, Transmission potential and severity of COVID-19 in South Korea, Int. J. Infect. Dis., 93 (2020), 339-344. |
[20] | A. Kuzdeuov, D. Baimukashev, A. Karabay, B. Ibragimov, A. Mirzakhmetov, M. Nurpeiissov, et al., A network-based stochastic epidemic simulator: Controlling COVID-19 with region-specific policies, medRxiv, (2020), 2020.05.02.20089136v1. |
[21] | J. Herman, W. Usher, SALib: An open-source python library for sensitivity analysis, J. Open Res. Softw., 2 (2017), 97. |