Citation: Haitao Song, Dan Tian, Chunhua Shan. Modeling the effect of temperature on dengue virus transmission with periodic delay differential equations[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 4147-4164. doi: 10.3934/mbe.2020230
[1] | T. Bancroft, On the etiology of dengue fever, Austral. Med. Gaz., 25 (1906), 17-18. |
[2] | S. Halstead, Dengue, Lancet, 370 (2007), 1644-1652. |
[3] | I. Kautner, M. Robinson, U. Kuhnle, Dengue virus infection: Epidemiology, pathogenesis, clinical presentation, diagnosis, and prevention, J. Pediatr., 131 (1997), 516-524. |
[4] | T. Senaratne, F. Noordeen, Diagnosis of dengue in Sri Lanka: Improvements to the existing state of the art in the island, Trans. R. Soc. Trop. Med. Hyg., 108 (2014), 685-691. |
[5] | C. Pagliari, J. Quaresma, E. Fermandes, F. Stegun, R. Brasil, H. de Andrade Jr, et al., Immunopathogenesis of dengue hemorrhagic fever: Contribution to the study of human liver lesions, J. Med. Virol., 86 (2014), 1193-1197. |
[6] | Public Health Agency of Canada. Available from: https://www.canada.ca/en/public-health.html. |
[7] | Dengue and severe dengue, World Health Organization, 2020. Available from: https://www.who.int/en/news-room/fact-sheets/detail/dengue-and-severe-dengue. |
[8] | J. Blaney, N. Sathe, C. Hanson, C. Firestone, B. Murphy, S. Whitehead, Vaccine candidates for dengue virus type 1 (DEN1) generated by replacement of the structural genes of rDEN4 and rDEN4Δ30 with those of DEN1, Virol. J., 4 (2007), 23. |
[9] | S. Sang, B. Chen B, H. Wu, Z. Yang, B. Di, L. Wang, et al., Dengue is still an imported disease in China: A case study in Guangzhou, Infect. Genet. Evol., 32 (2015), 178-190. |
[10] | L. Esteva, C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci., 150 (1998), 131-151. |
[11] | L. Esteva, C. Vargas, Influence of vertical and mechanical transmission on the dynamics of dengue disease, Math. Biosci., 167 (2000), 51-64. |
[12] | G. Chowell, P. Diaz-Duenas, J. Miller, A. Alcazar-Velazco, J. Fenimore, C. Castillo-Chavez, Estimation of the reproduction number of dengue fever from spatial epidemic data, Math. Biosci., 208 (2007), 571-589. |
[13] | A. Khan, M. Hassan, M. Imran, Estimating the basic reproduction number for single-strain dengue fever epidemics, Infect. Dise. Poverty, 1 (2014), 12. |
[14] | J. Tewa, J. Dimi, S. Bowong, Lyapunov functions for a dengue disease transmission model, Chaos, Solitons Fractals, 39 (2009), 936-941. |
[15] | H. Yang, C. Ferreira, Assessing the effects of vector control on dengue transmission, Appl. Math. Comput., 198 (2008), 401-413. |
[16] | S. Garba, A. Gumel, Backward bifurcations in dengue transmission dynamics, Math. Biosci., 215 (2008), 11-25. |
[17] | A. Abdelrazec, J. Belair, C. Shan, H. Zhu, Modeling the spread and control of dengue with limited public health resources, Math. Biosci., 271 (2016), 136-145. |
[18] | S. Chen, C. Liao, C. Chio, H. Chou, S. You, Y. Cheng, Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: insights from a statistical analysis, Sci. Total Environ., 408 (2010), 4069-4075. |
[19] | C. Shan, H. Zhu, Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds, J. Differ. Equ., 257 (2014), 1662-1688. |
[20] | L. Rueda, K. Patel, R. Axtell, R. Stinner, Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae), J. Med. Entomol., 27 (1990), 892-898. |
[21] | W. Tun-Lin, T. Burkot, B. Kay, Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia, Med. Vet. Entomol., 14 (2000), 31-37. |
[22] | M. Tong, A. Hansen, S. Hanson-Easey, J. Xiang, S. Cameron, Q. Liu, et al., Perceptions of capacity for infectious disease control and prevention to meet the challenges of dengue fever in the face of climate change: A survey among CDC staff in Guangdong Province, China, Environ. Res., 148 (2016), 295-302. doi: 10.1016/j.envres.2016.03.043 |
[23] | G. Fan, J. Liu, P. Van den Driessche, J. Wu, H. Zhu, The impact of maturation delay of mosquitoes on the transmission of West Nile virus, Math. Biosci., 228 (2010), 119-126. |
[24] | M. Li, G. Sun, L. Yakob, H. Zhu, Z. Jin, W. Zhang, The driving force for 2014 dengue outbreak in Guangdong, China, PloS One, 11 (2016), e0166211. |
[25] | L. Bai, L. Morton, Q. Liu, Climate change and mosquito-borne diseases in China: A review, Glob. Health, 9 (2013), 10. |
[26] | J. Gubler, The Arboviruses: Epidemiology and Ecology, II. CRC Press, Florida, 1989. |
[27] | C. Bowman, A. Gumel, P. Van den Driessche, J. Wu, H. Zhu, A mathematical model for assessing control strategies against West Nile virus, Bull. Math. Biol., 67 (2005), 1107-1133. |
[28] | Y. Lou, X. Zhao, A climate-based malaria transmission model with structured vector population, SIAM J. Appl. Math., 70 (2010), 2023-2044. |
[29] | H. Wan, H. Zhu, A new model with delay for mosquito population dynamics, Math. Biosci. Eng., 11 (2014), 1395-1410. |
[30] | X. Wang, Q. Zhao, A periodic vector-bias malaria model with incubation period, SIAM J. Appl. Math., 77 (2017), 181-201. |
[31] | K. Cooke, P. Van den Driessche, X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol., 39 (1999), 332-352. |
[32] | J. Velascohernandez, A model for Chagas disease involving transmission by vectors and blood transfusion, Theor. Popul. Biol., 46 (1994), 1-31. |
[33] | Y. Lou, X. Zhao, Threshold dynamics in a time-delayed periodic SIS epidemic model, Discrete Cont. Dyn. B., 126 (2009), 169-186. |
[34] | W. Wang, Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equ., 20 (2008), 699-717. |
[35] | D. Xu, Q. Zhao, Dynamics in a periodic competitive model with stage structure, J. Math. Anal. Appl., 311 (2005), 417-438. |
[36] | H. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, 2008. |
[37] | T. Kato, Perturbation Theory for Linear Operators, Springer Science and Business Media, 2013. |
[38] | F. Zhang, Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516. |
[39] | Q. Zhao, J. Borwein, P. Borwein, Dynamical Systems in Population Biology, Springer, New York, 2017. |
[40] | P. Magal, X. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275. |
[41] | E. Chikaki, H. Ishikawa, A dengue transmission model in Thailand considering sequential infections with all four serotypes, J. Infect. Dev. Ctries., 3 (2009), 711-722. |
[42] | M. Andraud, N. Hens, C. Marais, P. Beutels, Dynamic epidemiological models for dengue transmission: A systematic review of structural approaches, PloS One, 7 (2012), e49085. |
[43] | Z. Feng, J. Velasco-Hernandez, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol., 35 (1997), 523-544. |
[44] | H. Yang, M. Ferreira, K. Galvani, M. Andrighetti, D. Wanderley, Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiol. Infect., 137 (2009), 1188-1202. |
[45] | D. Watts, D. Burke, B. Harrison, R. Whitmire, A. Nisalak, Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus, Am. J. Trop. Med. Hyg., 36 (1987), 143-152. |
[46] | S. Hales, N. De Wet, J. Maindonald, A. Woodward, Potential effect of population and climate changes on global distribution of dengue fever: An empirical model, Lancet, 360 (2002), 830- 834. |
[47] | C. Shan, G. Fan, H. Zhu, Periodic phenomena and driving mechanisms in transmission of West Nile virus with maturation time, J. Dyn. Differ. Equ., 32 (2020), 1003-1026. |
[48] | X. Li, J. Cao, An impulsive delay inequality involving unbounded time-varying delay and applications, IEEE Trans. Automat.Contr., 7 (2017), 3618-3625. |
[49] | X. Li, X. Yang, T. Huang, Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342 (2019), 130-146. |