Citation: Muhammad Altaf Khan, Navid Iqbal, Yasir Khan, Ebraheem Alzahrani. A biological mathematical model of vector-host disease with saturated treatment function and optimal control strategies[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 3972-3997. doi: 10.3934/mbe.2020220
[1] | http://www.who.int/mediacentre/factsheets/fs387/en/ |
[2] | N. Surapol, T. Korkiatsakul, I. M. Tang, Dynamical model for determining human susceptibility to dengue fever, Am. J. Appl. Sci., 8 (2011), 1101. |
[3] | M. Rafiq, M. O. Ahmad, Numerical modeling of dengue disease with incubation period of virus, Pak. J. Eng. Appl. Sci., (2016). |
[4] | R. Rebeca, L. M. Harrison, R. A. Salas, D. Tovar,A. Nisalak, C. Ramos, et al., Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas, Virology, 230 (1997), 244-251. |
[5] | R. Ronald, The prevention of malaria, (2012). |
[6] | W. Hui-Ming, X. Z. Li, M. Martcheva, An epidemic model of a vector-borne disease with direct transmission and time delay, J. Math. Anal. Appl., 342 (2008), 895-908. |
[7] | F. Zhilan, J. X. Velasco-Hernndez, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol., 35 (1997), 523-544. |
[8] | Q. Zhipeng, Dynamical behavior of a vector-host epidemic model with demographic structure, Comput. Math. Appl., 56 (2008), 3118-3129. |
[9] | W. Viroj, Unusual mode of transmission of dengue, J. Inf. Devel. Coun., 4 (2009), 51-54. |
[10] | G. S. Mohammed, A. B. Gumel, M. R. Abu Bakar, Backward bifurcations in dengue transmission dynamics, Math. Biosci., 215 (2008), 11-25. |
[11] | C. Liming, X. Li, Analysis of a simple vector-host epidemic model with direct transmission, Disc. Dyna. Nat. Soc., 2010 (2010). |
[12] | M. Derouich, A. Boutayeb, Mathematical modelling and computer simulations of Dengue fever, App. Math. Comput., 177 (2006), 528-544. |
[13] | F. B. Agusto, M. A. Khan, Optimal control strategies for dengue transmission in Pakistan, Math. Biosci., 305 (2018), 102-121. |
[14] | E. Lourdes, C. Vargas, A model for dengue disease with variable human population, J. Math. Bio., 38 (1999), 220-240. |
[15] | A. A. Lashari, S. Aly, K. Hattaf, G. Zaman, I. H. Jung, X. Z. Li, Presentation of malaria epidemics using multiple optimal controls, J. Appl. Math., 2012 (2012). |
[16] | A. A. Lashari, K. Hattaf, G. Zaman, A delay differential equation model of a vector borne disease with direct transmission, Int. J. Ecol. Econ. Stat., (27), (2012), 25-35. |
[17] | A. A. Lashari, K. Hattaf, G. Zaman G, X. Z. Li, Backward bifurcation and optimal control of a vector borne disease, Appl. Math. Infor. Sci., 7 ( 2013), 301-309. |
[18] | L. Zhou, M. Fan, Dynamics of an SIR epidemic model with limited resources visited, Nonl. Anal. Real. World. Appl., 13 (2012), 312-324. |
[19] | C. H. Li, A. M. Yousef, Bifurcation analysis of a network-based SIR epidemic model with saturated treatment function, Chaos An Interdiscipl. J Nonl. Sci., 29(2019), 10.1063/1.5079631. |
[20] | K. Hattaf, Y. Yang, Global dynamics of an age-structured viral infection model with general incidence function and absorptionm, Int. J. Biomath., 11, (2018), https://doi.org/10.1142/S1793524518500651. |
[21] | P. Jia, C. Wang, G. Zhang, J. Ma, A rumor spreading model based on two propagation channels in social networks, Phys. A Statist. Mechan. Appl., 524 (2019), 342-353. |
[22] | J. Yang, X. Wang, Threshold dynamics of an SIR model with nonlinear incidence rate and agedependent susceptibility, Complexity, 2018 (2018). |
[23] | G. Birkhoff, G. C. Rota, Ordinary Differential Eqnarrays [M1]. Boston: Ginn (1982). |
[24] | V. D. D. Pauline, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci, 180 (2002), 29-48. |
[25] | C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361-404. |
[26] | L. Salle, P. Joseph, The stability of dynamical systems, Soc. Indus. Appl. Math., 1976. |
[27] | Y. Li. Michael, J. S. Muldowney, A geometric approach to global-stability problems, Siam. J. Math. Anal., 27 (1996), 1070-1083. |
[28] | R. H. Martin, Logarithmic norms and projections applied to linear differential systems, J. Math. Anal. Appl., 45 (1974), 432-454. |
[29] | K. O. Okosun, R. Smith, Optimal control analysis of malaria-schistosomiasis co-infection dynamics, Math. Biosci. Eng., 14 (2017), 377-405. |
[30] | K. O. Okosun, O. D. Makinde, A co-infection model of malaria and cholera diseases with optimal control, Math. Biosci., 258 (2014), 19-32. |
[31] | S. F. Saddiq, M. A. Khan, S. Islam, G. Zaman, I. I. H. Jung, et al. Optimal control of an epidemic model of leptospirosis with nonlinear saturated incidences, Ann. Res. Rev. Bio., 4 (2014), 560. |
[32] | M. A. Khan, R. Khan, Y. Khan, S. Islam, A mathematical analysis of Pine Wilt disease with variable population size and optimal control strategies, Chaos Solit. Fract., 108 (2018), 205-217. |
[33] | M. A. Khan, K. Ali, E. Bonyah, K. O. Okosun, S. Islam & A. Khan, Mathematical modeling and stability analysis of Pine Wilt Disease with optimal control, Sci. Rep., 7 (2017), 3115. |
[34] | F. H. Wendell, R. W. Rishel, Deterministic and stochastic optimal control, 1, Springer Science & Business Media, 2012. |
[35] | F. K. Renee, S. Lenhart, J. S. McNally, Optimizing chemotherapy in an HIV model, Elec. J. Diff. Eqn., 32, (1998), 1-12. |
[36] | L. S. Pontryagin, F. Moscow, Y. E. F. Mishchenko, et al, The mathematical theory of optimal processes, (1962). |