
Mathematical Biosciences and Engineering, 2020, 17(4): 37843793. doi: 10.3934/mbe.2020212
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
An efficient numerical algorithm for solving fractional SIRC model with salmonella bacterial infection
1 Department of Mathematics and Statistics, College of Science, AlImam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia
2 Department of Mathematics, Faculty of Science, BeniSuef University, BeniSuef 62511, Egypt
Received: , Accepted: , Published:
Special Issues: Mathematical Models and Autoimmune Diseases
References
1. M. AlSmadi, O. A. Arqub, Computational algorithm for solving fredholm timefractional partial integrodifferential equations of dirichlet functions type with error estimates, Appl. Math. Comput., 342 (2019), 280294.
2. S. Qureshi, A. Yusuf, Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator, Chaos Solitons Fractals, 126 (2019), 3240.
3. E. Bas, B. Acay, The direct spectral problem via local derivative including truncated MittagLeffler function, Appl. Math. Comput., 367 (2020), 124787.
4. B. Acay, E. Bas, T. Abdeljawad, Nonlocal fractional calculus from different viewpoint generated by truncated Mderivative, J. Comput. Appl. Math., 366 (2020), 112410.
5. B. Acay, E. Bas, T. Abdeljawad, Fractional economic models based on market equilibrium in the frame of different type kernels, Chaos Solitons Fractals, 130 (2020), 109438.
6. F. Songa, C. Xu, Spectral direction splitting methods for twodimensional space fractional diffusion equations, J. Comput. phys., 299 (2015), 196214.
7. S. Qureshi, A. Yusuf, Fractional derivatives applied to MSEIR problems: Comparative study with real world data, Eur. Phys. J. Plus, 134 (2019), 171.
8. A. A. Alnana, O. A. Arqub, M. AlSmadi, N. Shawagfeh, Fitted spectral Tau Jacobi technique for solving certain classes of fractional differential equations, Appl. Math, 13 (2019) 979987.
9. S. Qureshi, A. Yusuf, Modeling chickenpox disease with fractional derivatives: From caputo to atanganabaleanu, Chaos Solitons Fractals, 122 (2019), 111118.
10. R. Mollapourasl, A. Ostadi, On solution of functional integral equation of fractional order, Appl. Math. Comput., 270 (2015), 631643.
11. X. Shu, F. Xub, Y. Shi, Sasymptotically positive periodic solutions for a class of neutral fractional differential equations, Appl. Math. Comput., 270 (2015), 768776.
12. N. Sahin, S. Yuzbasi, M. Gulsu, A collocation approach for solving systems of linear Volterra integral equations with variable coefficients, Comput. Math. Appl., 62 (2011), 755769.
13. W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proc. R. Soc. London, 115 (1927), 700721.
14. A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with nonlinear transmission, Bull. Math. Biol., 68 (2006), 615626.
15. Y. Cha, Stability change of an epidemic model, Dyn. Syst. Appl., 9 (2000), 361376.
16. R. Casagrandi, L. Bolzoni, S. A. Levin, V. Andreasen, The SIRC model and influenza A, Math. Biosci., 200 (2006), 152169.
17. S. Hasan, A. AlZoubi, A. Freihet, M. AlSmadi, S. Momani, Solution of fractional SIR epidemic model using residual power series method, Appl. Math. Inf. Sci., 13 (2019), 19.
18. S. Hasan, A. ElAjou, S. Hadid, M. AlSmadi, S. Momani, AtanganaBaleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system, Chaos Solitons Fractals, 133 (2020), 109624.
19. M. ElShahed, A. Alsaedi, The fractional SIRC model and influenza A, Math. Probl. Eng., 2011 (2011).
20. M. A. Abdelkawy, A. M. Lopes, Mohammed M. Babatin, Shifted fractional Jacobi collocation method for solving fractional functional differential equations of variable order, Chaos Solitons Fractals, 134 (2020), 109721.
21. E. L. Ortiz, H. J. Samara, An operational approach to the Tau method for the numerical solution of nonlinear differential equations, Computing, 27 (1981), 1525.
22. R. M. Hafez, M. A. Zaky, M. A. Abdelkawy, Jacobi Spectral Galerkin method for DistributedOrder Fractional RayleighStokes problem for a Generalized Second Grade Fluid, Front. Phys., 7 (2020).
23. E. H. Doha, A. H. Bhrawy, R. H. Hafez, A Jacobi dualPetrovGalerkin method for solving some oddorder ordinary differential equations, in Abstract and Applied Analysis, Hindawi, (2011).
24. G. Szegö, Orthogonal Polynomials, American Mathematical Society, (1939).
25. R. Beals, R. Wong, Special Functions: A graduate text, Cambridge University Press, (2010).
26. K. Miller, B. Ross, An Introduction to the Fractional Calaulus and Fractional Differential Equations, John Wiley & Sons Inc., (1993).
27. D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204 (1996), 609625.
28. Z. M. Odibat, Na.T. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput., 186 (2007), 286293.
29. F. A. Rihan, D. Baleanu, S. Lakshmanan, R. Rakkiyappan, On fractional SIRC model with salmonella bacterial infection, in Abstract and Applied Analysis, Hindawi, (2011).
30. M. A. Abdelkawy, An improved collocation technique for distributedorder fractional partial differential equations, Rom. Rep. Phys., 72 (2020).
31. Y. G. Sanchez, Z. Sabir, J. L.G. Guirao, Design of a nonlinear SITR fractal model based on the dynamics of a novel coronavirus (COVID19), Fractals, 2020 (2020).
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)