Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Stability and bifurcation of a delayed diffusive predator-prey system with food-limited and nonlinear harvesting

School of Mathematics and Statistics, Central South University, Changsha 410083, China

Special Issues: Applications of delay differential equations in biology

Based on ecological significance, a delayed diffusive predator-prey system with food-limited and nonlinear harvesting subject to the Neumann boundary conditions is investigated in this paper. Firstly, the sufficient conditions of the stability of nonnegative constant steady state solutions of system are derived. The existence of Hopf bifurcation is obtained by analyzing the associated characteristic equation and the conditions of Turing instability are derived when the system has no delay. Furthermore, the occurrence conditions the Hopf bifurcation are discussed by regarding delay expressing the gestation time of the predator as the bifurcation parameter. Secondly, by using upper-lower solution method, the global asymptotical stability of a unique positive constant steady state solution of system is investigated. Moreover, we also give the detailed formulas to determine the direction, stability of Hopf bifurcation by applying the normal form theory and center manifold reduction. Finally, numerical simulations are carried out to demonstrate our theoretical results.
  Figure/Table
  Supplementary
  Article Metrics
Download full text in PDF

Export Citation

Article outline

Copyright © AIMS Press All Rights Reserved