Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Dynamic properties of VDP-CPG model in rhythmic movement with delay

Department of Mathematics, Northeast Forestry University, Harbin 150040, China

Special Issues: Applications of delay differential equations in biology

In this paper, Van Der Pol (VDP) oscillators are used as the output signal of central pattern generator (CPG), and a VDP-CPG network system of quadruped with four primary gaits (walk, trot, pace and bound) is established. The existence conditions of Hopf bifurcations for VDP-CPG systems corresponding to four primary gaits are given, and the coupling strength ranges between oscillators for four gaits are obtained. Numerical simulations are used to support theoretical analysis.
  Figure/Table
  Supplementary
  Article Metrics

Keywords VDP-CPG; rhythmic movement; gait; hopf bifurcation

Citation: Liqin Liu, Chunrui Zhang. Dynamic properties of VDP-CPG model in rhythmic movement with delay. Mathematical Biosciences and Engineering, 2020, 17(4): 3190-3202. doi: 10.3934/mbe.2020181

References

  • 1. M. Land, Eye movements in man and other animals, Vision Res., 162 (2019), 1-7.
  • 2. M. Manookin, S. Patterson, C. Linehan, Neural mechanisms mediating motion sensitivity in parasol ganglion cells of the primate retina, Neuron, 97 (2018), 1327-1340.e4.
  • 3. M. Creamer, O. Mano, D. A. Clark, Visual control of walking speed in drosophila, Neuron 100 (2018), 1460-1473.e6.
  • 4. T. Marques, M. T. Summers, G. Fioreze, M. Fridman, R. F. Dias, M. B. Feller, et al., A role for mouse primary visual cortex in motion perception, Curr. Biol., 28 (2018), 1703-1713.e6.
  • 5. F. Delcomyn, Neural basis of rhythmic behavior in animals, Science, 210 (1980), 492-498.
  • 6. K. Sigvardt, T. Williams, Models of central pattern generators as oscillators:the lamprey locomotor CPG, in Seminars in Neuroscience, Academic Press, (1992), 37-46.
  • 7. S. Hooper, Central pattern generators, Current Biology, 10 (2000), 176-179.
  • 8. T. Yamaguchi, The central pattern generator for forelimb locomotion in the cat, in Progress in Brain Research, Elsevier, (2004), 115-122.
  • 9. C. Bal, G. O. Koca, D. Korkmaz, Z. H. Akpolat, M. Ay, CPG-based autonomous swimming control for multi-tasks of a biomimetic robotic fish, Ocean Eng., 189 (2019), 106334.
  • 10. D. Tran, L. Koo, Y. Lee, H. Moon, S. Parket, J. C. Koo, et al., Central pattern generator based reflexive control of quadruped walking robots using a recurrent neural network, Rob. Auton. Sys., 62 (2014), 1497-1516.
  • 11. J. Zhang, F. Gao, X. Han, X. Chen, X. Han, Trot gait design and CPG method for a quadruped robot, J. Bionic. Eng., 11 (2014), 18-25.
  • 12. H. Xu, J. Gan, J. Ren, B. R. Wang, Y. L. Jin, Gait CPG adjustment for a quadruped robot based on Hopf oscillator, J. Syst. Simul., 29 (2017), 3092-3099.
  • 13. H. Liu, W. Jia, L. Bi, Hopf oscillator based adaptive locomotion control for a bionic quadruped robot, 2017 IEEE International Conference on Mechatronics and Automation, 2017. Available from: https://ieeexplore.ieee.org/abstract/document/8015944/.
  • 14. C. Liu, Q. Chen, J. Zhang, Coupled Van der Pol oscillators utilised as central pattern generators for quadruped locomotion, 2009 Chinese Control and Decision Conference, 2009. Available from: https://ieeexplore.ieee.org/abstract/document/5192385.
  • 15. S. Dixit, A. Sharma, M. Shrimali, The dynamics of two coupled Van der Pol oscillators with attractive and repulsive coupling, Phys. Lett. A, 383 (2019), 125930.
  • 16. J. Collins, I. Stewart, Coupled nonlinear oscillators and the symmetries of animal gaits, J. Nonlinear Sci., 3 (1993), 349-392.
  • 17. P. L. Buono, M. Golubitsky, Models of central pattern generators for quadruped locomotion I. Primary gaits, J. Math. Biol., 42 (2001), 291-326.
  • 18. P. L. Buono, Models of central pattern generators for quadruped locomotion II. Secondary gaits, J. Math. Biol., 42 (2001), 327-346.
  • 19. Y. Song, J. Xu, T. Zhang, Bifurcation, amplitude death and oscillation patterns in a system of three coupled van der Pol oscillators with diffusively delayed velocity coupling, CHA, 21 (2011), 023111.
  • 20. C. Zhang, B. Zheng, L. Wang, Multiple Hopf bifurcation of three coupled van der Pol oscillators with delay, Appl. Math. Comput., 217 (2011), 7155-7166.

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved