Citation: Weijie Lu, Yonghui Xia, Yuzhen Bai. Periodic solution of a stage-structured predator-prey model incorporating prey refuge[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 3160-3174. doi: 10.3934/mbe.2020179
[1] | A. Lotka, Elements of Physical Biology, USA: Williams Wilkins Co., Balitmore,1925. |
[2] | V. Volterra, Variazioni e fluttuazioni del numero dindividui in specie animali conviventi, Mem. Acad Lincei Roma, 2 (1926), 31-113. |
[3] | G. F. Gause, N. P. Smaragdova, A. A. Witt, Further studies of interaction between predators and prey, J. Anim. Ecol., 5 (1936), 1-18. |
[4] | G. F. Gause, The Struggle for Existence, USA: Williams Wilkins Co., Balitmore, 1934. |
[5] | S. Magalhães, P. C. J. V. Rijn, M. Montserrat, A. Pallini, M. W. Sabelis, Population dynamics of thrips prey and their mite predators in a refuge, Oecologia, 150 (2007), 557-568. |
[6] | J. Ghosh, B. Sahoo, S. Poria, Prey-predator dynamics with prey refuge providing additional food to predator, Chaos Soliton. Fract., 96 (2017), 110-119. |
[7] | B. Sahoo, S. Poria, Effects of additional food in a delayed predator-prey model, Math. Biosci., 261 (2015), 62-73. |
[8] | B. Sahoo, S. Poria, Dynamics of predator-prey system with fading memory, Appl. Math. Comput., 347 (2019), 319-333. |
[9] | U. Ufuktepe, B. Kulahcioglu, O. Akman, Stability analysis of a prey refuge predator-prey model with Allee effects, J. Biosciences, 44 (2019), 85. |
[10] | Y. Xie, J. Lu, Z. Wang, Stability analysis of a fractional-order diffused prey-predator model with prey refuges, Physica A., 526 (2019), 120773. |
[11] | C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Canada, 45 (1965), 1-60. |
[12] | Q. Y. Bie, Q. R. Wang, Z. A. Yao, Cross-diffusion induced instability and pattern formation for a Holling type-II predator-prey model, Appl. Math. Comput., 247 (2014), 1-12. |
[13] | L. Chen, F. Chen, L. Chen, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge, Nonlinear. Anal-Real., 11 (2010), 246-252. |
[14] | Z. J. Du, X. Chen, Z. S. Feng, Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms, Discrete. Contin. Dyn. Syst., 7 (2014), 1203-1214. |
[15] | J. J. Jiao, L. S. Chen, S. H. Cai, A delayed stage-structured Holling II predator-prey model with mutual interference and impulsive perturbations on predator, Chaos Soliton. Fract., 40 (2009), 1946-1955. |
[16] | W. Ko, K. Ryu, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge, J. Differ. Equations, 231 (2006), 534-550. |
[17] | V. Krivan, J. Eisner, The effect of the Holling type II functional response on apparent competition, Theor. Popul. Biol., 70 (2006), 421-430. |
[18] | V. Krivan, On the Gause predator prey model with a refuge: A fresh look at the history, J. Theor. Biol., 274 (2011), 67-73. |
[19] | Q. Liu, D. Q.Jiang, H. Tasawar, A. Ahmed, Dynamics of a stochastic predator-prey model with stage structure for predator and holling type II functional response, J. Nonlinear Sci., 28 (2018), 1151-1187. |
[20] | S. P. Li, W. N. Zhang, Bifurcations of a discrete prey-predator model with Holling type II functional response, Discrete Cont. Dyn-B., 14 (2010), 159-176. |
[21] | H. Molla, S. R. Md, S. Sahabuddin, Dynamics of a predator-prey model with holling type II functional response incorporating a prey refuge depending on both the species, Int. J. Nonlin. Sci. Num., 20 (2019), 1-16. |
[22] | J. Song, Y. Xia, Y. Bai, Y. Cai, D. O'Regan, A non-autonomous Leslie-Gower model with Holling type IV functional response and harvesting complexity, Adv. Differ. Equ-Ny., 2019 (2019), 1-12. |
[23] | D. Ye, M. Fan, W. P. Zhang, Periodic solutions of density dependent predator-prey systems with Holling Type 2 functional response and infinite delays, J. Appl. Math. Mec., 85 (2005), 213-221. |
[24] | S. W. Zhang, L. S. Chen, A Holling II functional response food chain model with impulsive perturbations, Chaos Soliton. Fract., 24 (2005), 1269-1278. |
[25] | J. Zhou, C. L. Mu, Coexistence states of a Holling type-II predator-prey system, J. Math. Anal. Appl., 369 (2010), 555-563. |
[26] | S. Jana, M. Chakraborty, K. Chakraborty, T. K. Kar, Global stability and bifurcation of time delayed prey-predator system incorporating prey refuge. Math. Comput. Simulat., 85 (2012), 57-77. |
[27] | W. G. Aiello, H. I. Freedman, J. Wu, Analysis of a model representing stage-structured population growth with state-dependent timedelay, SIAM J. Appl. Math., 52 (1992), 885-889. |
[28] | F. Brauer, Z. Ma, Stability of stage-structured population models, J. Math. Anal. Appl., 126 (1987), 301-315. |
[29] | H. I. Freedman, J. Wu, Persistence and global asymptotic stability of single species dispersal models with stage-structure, Q. Appl. Math., 49 (1991), 351-371. |
[30] | W. Wang, L. Chen, A predator-prey system with stage-structure for predator, Comput. Math. Appl., 33 (1997), 83-91. |
[31] | W. Wang, G. Mulone, F. Salemi, V. Salone, Permanence and stability of a stage-structured predator prey model, J. Math. Anal. Appl., 262 (2001), 499-528. |
[32] | Y. Chen, Multiple periodic solution of delayed predator-prey systems with type IV functional responses, Nonlinear. Anal-Hybri., 5 (2004), 45-53. |
[33] | M. Fan, Q. Wang, X. F. Zou, Dynamics of a nonautonomous ratio-dependent predator-prey system, P. Roy. Soc. Lond. A. Math., 133 (2003), 97-118. |
[34] | M. Fan, P. J. Y. Wong, R. P. Agarwal, Periodicity and stability in periodic n-species Lotka-Volterra competition system with feedback controls and deviating arguments, Acta. Math. Sin., 19 (2003), 801-822. |
[35] | R. Gaines, J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Mathematics, Springer, Berlin, 1977. |
[36] | H. Zheng, L. Guo, Y. Z. Bai, Y. H. Xia, Periodic solutions of a non-autonomous predator-prey system with migrating prey and disease infection: Via Mawhin's coincidence degree theory, J. Fix. Point Theory A., 21 (2019), 21-37. |
[37] | Y. H. Xia, Y. Shen, An nonautonomous predator-prey model with refuge effect, J. Xuzhou Inst. Tech., 34 (2019), 1-7. |
[38] | F. Chen, On a periodic multi-species ecological model, Appl. Math. Comput., 171 (2005), 492-510. |
[39] | F. Chen, Positive periodic solutions of neutral Lotka-Volterra system with feedback control, Appl. Math. Comput., 162 (2005), 1279-1302. |
[40] | F. Chen, F. Lin, X. Chen, Sufficient conditions for the existence positive periodic solutions of a class of neutral delay models with feedback control, Appl. Math. Comput., 158 (2004), 45-68. |
[41] | L. Chen. Mathematical Models and Methods in Ecology, Science Press, Beijing Chinese, 1998. |
[42] | X. Chen, Z. J. Du, Existence of positive periodic solutions for a neutral delay predator-prey model with Hassell-Varley type functional response and impulse, Qual. Theor. Dyn. Syst., 17 (2018), 67-80. |
[43] | Z. J. Du, Z. S. Feng, Periodic solutions of a neutral impulsive predator-prey model with Beddington-DeAngelis functional response with delays, J. Comput. Appl. Math., 258 (2014), 87-98. |
[44] | S. Gao, L. Chen, Z. Teng, Hopf bifurcation and global stability for a delayed predator-prey system with stage structure for predator, Appl. Math. Comput., 202 (2008), 721-729. |
[45] | S. Kant, V. Kumar, Stability analysis of predator-prey system with migrating prey and disease infection in both species. Appl. Math. Model., 42 (2017), 509-539. |
[46] | Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics, Academic Press, San Diego, 1993. |
[47] | S. Liu, L. Chen, Z. Liu, Extinction and permanence in nonautonomous competitive system with stage structure, J. Math. Anal. Appl., 274 (2002), 667-684. |
[48] | S. Lu, W. Ge, Existence of positive periodic solutions for neutral population model with multiple delays, Appl. Math. Comput., 153 (2004), 885-902. |
[49] | X. Z. Meng, S. N. Zhao, T. Feng, T. H. Zhang, Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis, J. Math. Anal. Appl., 433 (2016), 227-242. |
[50] | J. Song, M. Hu, Y. Z. Bai, Y. Xia, Dynamic analysis of a non-autonomous ratio-dependent predator-prey model with additional food. J. Comput. Anal. Appl., 8 (2018), 1893-1909. |
[51] | Y. L. Song, H. P. Jiang, Q. X. Liu, Y. Yuan, Spatiotemporal dynamics of the diffusive Mussel-Algae model near Turing-Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 16 (2017), 2030-2062. |
[52] | Y. L. Song, X. S. Tang, Stability, steady-state bifurcations and turing patterns in a predator-prey model with herd behavior and prey-taxis, Stud. Appl. Math., 139 (2017), 371-404. |
[53] | Y. L. Song, S. H. Wu, H. Wang, Spatiotemporal dynamics in the single population modelwith memory-based diffusion and nonlocal effect, J. Differ. Equations. 267 (2019), 6316-6351. |
[54] | J. J. Wei, M. Y. Li, Hopf bifurcation analysis in a delayed nicholson blowflies equation, Nonlinear Anal-Theor., 60 (2005), 1351-1367. |
[55] | Z. Wei, Y. H. Xia, T. Zhang, Stability and bifurcation analysis of a amensalism model with weak Allee effect, Qual. Theor. Dyn. Syst., 2020. |
[56] | R. Xu, Z. Ma, Stability and Hopf bifurcation in a ratio-dependent predator prey system with stage structure, Chaos Soliton. Fract., 38 (2008), 669-684. |
[57] | J. Y. Xu, T. H. Zhang, K. Y. Song, A stochastic model of bacterial infection associated with neutrophils, Appl. Math. Comput., 373 (2020), 125025. |
[58] | F. Xu, C. Ross, K. Vlastimil, Evolution of mobility in predator-prey systems, Discrete Cont. DynB., 19 (2014), 3397-3432. |
[59] | F. Xu, M. Connell, An investigation of the combined effect of an annual mass gathering event and seasonal infectiousness on disease outbreak, Math. Biosci., 312 (2019), 50-58. |
[60] | J. Y. Yang, Z. Jin, F. Xu, Threshold dynamics of an age-space structured SIR model on heterogeneous environment, Appl. Math. Lett., 96 (2019), 69-74. |
[61] | F. Q. Yi, J. J. Wei, J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predater-prey system, J. Differ. Equations, 246 (2009), 1944-1977. |
[62] | F. Q. Yi, J. J. Wei, J. P. Shi, Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonlinear Anal-Real., 9 (2008), 1038-1051. |
[63] | T. H. Zhang, T. Q. Zhang, X. Z. Meng, Stability analysis of a chemostat model with maintenance energy, Appl. Math. Lett., 68 (2017), 1-7. |
[64] | T. H. Zhang, Z. W. Geem, Review of harmony search with respect to algorithm structure, Swarm Evol. Comput., 48 (2019), 31-43. |
[65] | X. G. Zhang, C. H. Shan, Z. Jin, H. P. Zhu, Complex dynamics of epidemic models on adaptive networks, J. Differ. Equations, 266 (2019), 803-832. |