
Mathematical Biosciences and Engineering, 2020, 17(4): 31603174. doi: 10.3934/mbe.2020179
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Periodic solution of a stagestructured predatorprey model incorporating prey refuge
1 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
2 School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China
Received: , Accepted: , Published:
Special Issues: Advances in Mathematical Modelling and Analysis of Bioprocesses
References
1. A. Lotka, Elements of Physical Biology, USA: Williams Wilkins Co., Balitmore,1925.
2. V. Volterra, Variazioni e fluttuazioni del numero dindividui in specie animali conviventi, Mem. Acad Lincei Roma, 2 (1926), 31113.
3. G. F. Gause, N. P. Smaragdova, A. A. Witt, Further studies of interaction between predators and prey, J. Anim. Ecol., 5 (1936), 118.
4. G. F. Gause, The Struggle for Existence, USA: Williams Wilkins Co., Balitmore, 1934.
5. S. Magalhães, P. C. J. V. Rijn, M. Montserrat, A. Pallini, M. W. Sabelis, Population dynamics of thrips prey and their mite predators in a refuge, Oecologia, 150 (2007), 557568.
6. J. Ghosh, B. Sahoo, S. Poria, Preypredator dynamics with prey refuge providing additional food to predator, Chaos Soliton. Fract., 96 (2017), 110119.
7. B. Sahoo, S. Poria, Effects of additional food in a delayed predatorprey model, Math. Biosci., 261 (2015), 6273.
8. B. Sahoo, S. Poria, Dynamics of predatorprey system with fading memory, Appl. Math. Comput., 347 (2019), 319333.
9. U. Ufuktepe, B. Kulahcioglu, O. Akman, Stability analysis of a prey refuge predatorprey model with Allee effects, J. Biosciences, 44 (2019), 85.
10. Y. Xie, J. Lu, Z. Wang, Stability analysis of a fractionalorder diffused preypredator model with prey refuges, Physica A., 526 (2019), 120773.
11. C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Canada, 45 (1965), 160.
12. Q. Y. Bie, Q. R. Wang, Z. A. Yao, Crossdiffusion induced instability and pattern formation for a Holling typeII predatorprey model, Appl. Math. Comput., 247 (2014), 112.
13. L. Chen, F. Chen, L. Chen, Qualitative analysis of a predatorprey model with Holling type II functional response incorporating a constant prey refuge, Nonlinear. AnalReal., 11 (2010), 246252.
14. Z. J. Du, X. Chen, Z. S. Feng, Multiple positive periodic solutions to a predatorprey model with LeslieGower Hollingtype II functional response and harvesting terms, Discrete. Contin. Dyn. Syst., 7 (2014), 12031214.
15. J. J. Jiao, L. S. Chen, S. H. Cai, A delayed stagestructured Holling II predatorprey model with mutual interference and impulsive perturbations on predator, Chaos Soliton. Fract., 40 (2009), 19461955.
16. W. Ko, K. Ryu, Qualitative analysis of a predatorprey model with Holling type II functional response incorporating a prey refuge, J. Differ. Equations, 231 (2006), 534550.
17. V. Krivan, J. Eisner, The effect of the Holling type II functional response on apparent competition, Theor. Popul. Biol., 70 (2006), 421430.
18. V. Krivan, On the Gause predator prey model with a refuge: A fresh look at the history, J. Theor. Biol., 274 (2011), 6773.
19. Q. Liu, D. Q.Jiang, H. Tasawar, A. Ahmed, Dynamics of a stochastic predatorprey model with stage structure for predator and holling type II functional response, J. Nonlinear Sci., 28 (2018), 11511187.
20. S. P. Li, W. N. Zhang, Bifurcations of a discrete preypredator model with Holling type II functional response, Discrete Cont. DynB., 14 (2010), 159176.
21. H. Molla, S. R. Md, S. Sahabuddin, Dynamics of a predatorprey model with holling type II functional response incorporating a prey refuge depending on both the species, Int. J. Nonlin. Sci. Num., 20 (2019), 116.
22. J. Song, Y. Xia, Y. Bai, Y. Cai, D. O'Regan, A nonautonomous LeslieGower model with Holling type IV functional response and harvesting complexity, Adv. Differ. EquNy., 2019 (2019), 112.
23. D. Ye, M. Fan, W. P. Zhang, Periodic solutions of density dependent predatorprey systems with Holling Type 2 functional response and infinite delays, J. Appl. Math. Mec., 85 (2005), 213221.
24. S. W. Zhang, L. S. Chen, A Holling II functional response food chain model with impulsive perturbations, Chaos Soliton. Fract., 24 (2005), 12691278.
25. J. Zhou, C. L. Mu, Coexistence states of a Holling typeII predatorprey system, J. Math. Anal. Appl., 369 (2010), 555563.
26. S. Jana, M. Chakraborty, K. Chakraborty, T. K. Kar, Global stability and bifurcation of time delayed preypredator system incorporating prey refuge. Math. Comput. Simulat., 85 (2012), 5777.
27. W. G. Aiello, H. I. Freedman, J. Wu, Analysis of a model representing stagestructured population growth with statedependent timedelay, SIAM J. Appl. Math., 52 (1992), 885889.
28. F. Brauer, Z. Ma, Stability of stagestructured population models, J. Math. Anal. Appl., 126 (1987), 301315.
29. H. I. Freedman, J. Wu, Persistence and global asymptotic stability of single species dispersal models with stagestructure, Q. Appl. Math., 49 (1991), 351371.
30. W. Wang, L. Chen, A predatorprey system with stagestructure for predator, Comput. Math. Appl., 33 (1997), 8391.
31. W. Wang, G. Mulone, F. Salemi, V. Salone, Permanence and stability of a stagestructured predator prey model, J. Math. Anal. Appl., 262 (2001), 499528.
32. Y. Chen, Multiple periodic solution of delayed predatorprey systems with type IV functional responses, Nonlinear. AnalHybri., 5 (2004), 4553.
33. M. Fan, Q. Wang, X. F. Zou, Dynamics of a nonautonomous ratiodependent predatorprey system, P. Roy. Soc. Lond. A. Math., 133 (2003), 97118.
34. M. Fan, P. J. Y. Wong, R. P. Agarwal, Periodicity and stability in periodic nspecies LotkaVolterra competition system with feedback controls and deviating arguments, Acta. Math. Sin., 19 (2003), 801822.
35. R. Gaines, J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Mathematics, Springer, Berlin, 1977.
36. H. Zheng, L. Guo, Y. Z. Bai, Y. H. Xia, Periodic solutions of a nonautonomous predatorprey system with migrating prey and disease infection: Via Mawhin's coincidence degree theory, J. Fix. Point Theory A., 21 (2019), 2137.
37. Y. H. Xia, Y. Shen, An nonautonomous predatorprey model with refuge effect, J. Xuzhou Inst. Tech., 34 (2019), 17.
38. F. Chen, On a periodic multispecies ecological model, Appl. Math. Comput., 171 (2005), 492510.
39. F. Chen, Positive periodic solutions of neutral LotkaVolterra system with feedback control, Appl. Math. Comput., 162 (2005), 12791302.
40. F. Chen, F. Lin, X. Chen, Sufficient conditions for the existence positive periodic solutions of a class of neutral delay models with feedback control, Appl. Math. Comput., 158 (2004), 4568.
41. L. Chen. Mathematical Models and Methods in Ecology, Science Press, Beijing Chinese, 1998.
42. X. Chen, Z. J. Du, Existence of positive periodic solutions for a neutral delay predatorprey model with HassellVarley type functional response and impulse, Qual. Theor. Dyn. Syst., 17 (2018), 6780.
43. Z. J. Du, Z. S. Feng, Periodic solutions of a neutral impulsive predatorprey model with BeddingtonDeAngelis functional response with delays, J. Comput. Appl. Math., 258 (2014), 8798.
44. S. Gao, L. Chen, Z. Teng, Hopf bifurcation and global stability for a delayed predatorprey system with stage structure for predator, Appl. Math. Comput., 202 (2008), 721729.
45. S. Kant, V. Kumar, Stability analysis of predatorprey system with migrating prey and disease infection in both species. Appl. Math. Model., 42 (2017), 509539.
46. Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics, Academic Press, San Diego, 1993.
47. S. Liu, L. Chen, Z. Liu, Extinction and permanence in nonautonomous competitive system with stage structure, J. Math. Anal. Appl., 274 (2002), 667684.
48. S. Lu, W. Ge, Existence of positive periodic solutions for neutral population model with multiple delays, Appl. Math. Comput., 153 (2004), 885902.
49. X. Z. Meng, S. N. Zhao, T. Feng, T. H. Zhang, Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis, J. Math. Anal. Appl., 433 (2016), 227242.
50. J. Song, M. Hu, Y. Z. Bai, Y. Xia, Dynamic analysis of a nonautonomous ratiodependent predatorprey model with additional food. J. Comput. Anal. Appl., 8 (2018), 18931909.
51. Y. L. Song, H. P. Jiang, Q. X. Liu, Y. Yuan, Spatiotemporal dynamics of the diffusive MusselAlgae model near TuringHopf bifurcation, SIAM J. Appl. Dyn. Syst., 16 (2017), 20302062.
52. Y. L. Song, X. S. Tang, Stability, steadystate bifurcations and turing patterns in a predatorprey model with herd behavior and preytaxis, Stud. Appl. Math., 139 (2017), 371404.
53. Y. L. Song, S. H. Wu, H. Wang, Spatiotemporal dynamics in the single population modelwith memorybased diffusion and nonlocal effect, J. Differ. Equations. 267 (2019), 63166351.
54. J. J. Wei, M. Y. Li, Hopf bifurcation analysis in a delayed nicholson blowflies equation, Nonlinear AnalTheor., 60 (2005), 13511367.
55. Z. Wei, Y. H. Xia, T. Zhang, Stability and bifurcation analysis of a amensalism model with weak Allee effect, Qual. Theor. Dyn. Syst., 2020.
56. R. Xu, Z. Ma, Stability and Hopf bifurcation in a ratiodependent predator prey system with stage structure, Chaos Soliton. Fract., 38 (2008), 669684.
57. J. Y. Xu, T. H. Zhang, K. Y. Song, A stochastic model of bacterial infection associated with neutrophils, Appl. Math. Comput., 373 (2020), 125025.
58. F. Xu, C. Ross, K. Vlastimil, Evolution of mobility in predatorprey systems, Discrete Cont. DynB., 19 (2014), 33973432.
59. F. Xu, M. Connell, An investigation of the combined effect of an annual mass gathering event and seasonal infectiousness on disease outbreak, Math. Biosci., 312 (2019), 5058.
60. J. Y. Yang, Z. Jin, F. Xu, Threshold dynamics of an agespace structured SIR model on heterogeneous environment, Appl. Math. Lett., 96 (2019), 6974.
61. F. Q. Yi, J. J. Wei, J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predaterprey system, J. Differ. Equations, 246 (2009), 19441977.
62. F. Q. Yi, J. J. Wei, J. P. Shi, Diffusiondriven instability and bifurcation in the LengyelEpstein system, Nonlinear AnalReal., 9 (2008), 10381051.
63. T. H. Zhang, T. Q. Zhang, X. Z. Meng, Stability analysis of a chemostat model with maintenance energy, Appl. Math. Lett., 68 (2017), 17.
64. T. H. Zhang, Z. W. Geem, Review of harmony search with respect to algorithm structure, Swarm Evol. Comput., 48 (2019), 3143.
65. X. G. Zhang, C. H. Shan, Z. Jin, H. P. Zhu, Complex dynamics of epidemic models on adaptive networks, J. Differ. Equations, 266 (2019), 803832.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)