Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Critical analysis of electrohysterographic methods for continuous monitoring of intrauterine pressure

1 Bloomlife, Schiepse Bos 6, Genk 3600, Belgium
2 Signal Processing Systems, University of Technology Eindhoven, Eindhoven 5612 AZ, Netherlands
3 Perinatology and Obstetrics department, Maxima Medical Center, Veldhoven 5504 DB, Netherlands

Special Issues: Computer Methods and Programs in Prenatal Medicine

Monitoring the progression of uterine activity provides important prognostic information during pregnancy and delivery. Currently, uterine activity monitoring relies on direct or indirect mechanical measurements of intrauterine pressure (IUP), which are unsuitable for continuous long-term observation. The electrohysterogram (EHG) provides a non-invasive alternative to the existing methods and is suitable for long-term ambulatory use. Several published state-of-the-art methods for EHG-based IUP estimation are here discussed, analyzed, optimized, and compared. By means of parameter space exploration, key parameters of the methods are evaluated for their relevance and optimal values. We have optimized all methods towards higher IUP estimation accuracy and lower computational complexity. Their accuracy was compared with the gold standard accuracy of internally measured IUP. Their computational complexity was compared based on the required number of multiplications per second (MPS). Significant reductions in computational complexity have been obtained for all published algorithms, while improving IUP estimation accuracy. A correlation coefficient of 0.72 can be obtained using fewer than 120 MPS. We conclude that long-term ambulatory monitoring of uterine activity is possible using EHG-based methods. Furthermore, the choice of a base method for IUP estimation is less important than the correct selection of electrode positions, filter parameters, and postprocessing methods. The presented review of state-of-the-art methods and applied optimizations show that long-term ambulatory IUP monitoring is feasible using EHG measurements.
  Article Metrics

Keywords ambulatory; computational complexity; electrohysterography; intrauterine pressure; long-term monitoring; parameter space exploration; pregnancy; uterine activity

Citation: M. J. Rooijakkers, C. Rabotti, S. G. Oei, M. Mischi. Critical analysis of electrohysterographic methods for continuous monitoring of intrauterine pressure. Mathematical Biosciences and Engineering, 2020, 17(4): 3019-3039. doi: 10.3934/mbe.2020171


  • 1. D. R. Mattison, K. Damus, E. Fiore, J. Petrini, C. Alter, Preterm delivery: A public health perspective, Paediatr. Perinat. Epidemiol., 15 (2001), 7-16.
  • 2. R. L. Goldberg, E. M. McClure, Preterm Birth: Prevention and Management, John Wiley & Sons, (2010), 22-38.
  • 3. R. L Goldenberg, J. F. Culhane, J. D. Iams, R. Romero, Epidemiology and causes of preterm birth, The Lancet, 371 (2008), 75-84.
  • 4. H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. B. Moller, R. Narwal, et al., National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications, The Lancet, 379 (2012), 2162-2172.
  • 5. K. Flood, F. D. Malone, Prevention of preterm birth, Semin. Fetal Neonat. Med., 17 (2012), 58-63.
  • 6. M. J. Corwin, S. M. Mou, S. G. Sunderji, S. Gall, H. How, V. Patel, et al., Multicenter randomized clinical trial of home uterine activity monitoring: Pregnancy outcomes for all women randomized, Am. J. Obstet. Gynecol., 175 (1996),1281-1285.
  • 7. D. L. Bentley, J. L. Bentley, D. L. Watson, R. A. Welch, R. W. Martin, K. S. Gookin, et al., Relationship of uterine contractility to preterm labor, Obstet. Gynecol., 76 (1990), 36S-38S.
  • 8. M. Lucovnik, R. J. Kuon, L. R. Chambliss, W. L. Maner, S. Q. Shi, L. Shi, et al., Use of uterine electromyography to diagnose term and preterm labor. Acta Obstet. Gynecol. Scand., 90 (2011), 150-157.
  • 9. A. Diab, M. Hassan, C. Marque, B. Karlsson, Quantitative performance analysis of four methods of evaluating signal nonlinearity: Application to uterine emg signals, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012. Available from: https://ieeexplore.ieee.org/abstract/document/6346113.
  • 10. H. de Lau, C. Rabotti, N. Haazen, S. G. Oei, M. Mischi, Towards improving uterine electrical activity modelling and electrohysterography: ultrasonic quantification of uterine movements during labor, Acta Obstet. Gynecol. Scand., 92 (2013), 1323-1326.
  • 11. H. de Lau, K. T. Yang, C. Rabotti, M. Vlemminx, G.Bajlekov, M. Mischi, et al., Toward a new modality for detecting a uterine rupture: electrohysterogram propagation analysis during trial of labor after cesarean, J. Matern. Fetal Neonat. Med., 30 (2017), 574-579.
  • 12. A. Ray, A. Hildreth, U. I. Esen, Morbid obesity and intra-partum care, J. Obstet. Gynaecol., 28 (2008), 301-304.
  • 13. A. M. Miles, M. Monga, K. S. Richeson, Correlation of external and internal monitoring of uterine activity in a cohort of term patients, Am. J. Perinatol., 18 (2001),137-140.
  • 14. K. M. Rood, Complications associated with insertion of intrauterine pressure catheters: An unusual case of uterine hypertonicity and uterine perforation resulting in fetal distress after insertion of an intrauterine pressure catheter, Case Rep. Obstet. Gynecol., 2012 (2012).
  • 15. L. M. Harper, A. L. Shanks, M. G. Tuuli, K. A. Roehl, A. G. Cahill, The risks and benefits of internal monitors in laboring patients, Am. J. Obstet. Gynecol., 209 (2013), 38.e1-38.e6.
  • 16. R. E. Garfield, H. Maul, W. Maner, C. Fittkow, G. Olson, L. Shi, et al., Uterine electromyography and light-induced fluorescence in the management of term and preterm labor, J. Soc. Gynecol. Invest., 9 (2002),265-275.
  • 17. A. J. Wolfberg. The future of fetal monitoring, Rev. Obstet. Gynecol., 5 (2012), e132-e136.
  • 18. D. Devedeux, C. Marque, S. Mansour, G. Germain, J. Duchêne, Uterine electromyography: a critical review. Am. J. Obstet. Gynecol., 169 (1993), 1636-1653.
  • 19. J. Duchene, D. Devedeux, S. Mansour, C. Marque, Analyzing uterine EM: Tracking instantaneous burst frequency, IEEE Eng. Med. Biol. Mag., 14 (1995), 125-132.
  • 20. R. E. Garfield, W. L. Maner, Physiology and electrical activity of uterine contractions, in Seminars in cell & developmental biology, Academic Press, (2007), 289-295.
  • 21. T. Y. Euliano, M. T. Nguyen, S. Darmanjian, S. P. McGorray, N. Euliano, A. Onkala, et al., Monitoring uterine activity during labor: A comparison of 3 methods, Am. J. Obstet. Gynecol., 208 (2013), 66.e1-66.e6.
  • 22. R. E. Garfield, G. Saade, C. Buhimschi, I. Buhimschi, L. Shi, S. Q. Shi, et al., Control and assessment of the uterus and cervix during pregnancy and labour, Hum. Reprod. Update, 4 (1998), 673-695.
  • 23. H. Eswaran, J. D. Wilson, P. Murphy, H. Preissl, C. L. Lowery, Application of wavelet transform to uterine electromyographic signals recorded using abdominal surface electrodes, J. Matern. Fetal Neonat. Med., 11 (2002), 158-166.
  • 24. T. Y. Euliano, M. T. Nguyen, D. Marossero, R. K. Edwards, Monitoring contractions in obese parturients: Electrohysterography compared with traditional monitoring, Obstet. Gynecol., 109 (2007), 1136-1140.
  • 25. K. Horoba, S. Graczyk, J. Jezewski, A. Gacek, J. Wrobel, Statistical approach to analysis of electrohysterographic signal, 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society, 1999. Available from: https://ieeexplore.ieee.org/abstract/document/804042/.
  • 26. J. Ramondt, C. Kooten, A. Verhoeff, H. C. S. Wallenburg, Computer analysis of mechanical and electrical uterine activity, Med. Biol. Eng. Comput., 24 (1986), 351-355.
  • 27. K. Horoba, J. Jezewski, J. Wrobel, S. Graczyk, In Algorithm for detection of uterine contractions from electrohysterogram, 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001. Available from: https://ieeexplore.ieee.org/abstract/document/1017198.
  • 28. J. Jezewski, K. Horoba, A. Matonia, J. Wrobel, Quantitative analysis of contraction patterns in electrical activity signal of pregnant uterus as an alternative to mechanical approach, Physiol. Meas., 26 (2005),753-767.
  • 29. M. D. Skowronski, J. G. Harris, D. E. Marossero, R. K. Edwards, T. Y. Euliano, Prediction of intrauterine pressure from electrohysterography using optimal linear filtering, IEEE Trans. Biomed. Eng., 53 (2006), 1983-1989.
  • 30. B. C. Jacod, E. Ma. Graatsma, E. V. Hagen, G. H. A. Visser, A validation of electrohysterography for uterine activity monitoring during labour, J. Matern. Fetal Neonat. Med., 23 (2010), 17-22.
  • 31. J. Reinhard, B. R. HGill, S. Schiermeier, H. Löser, L. M. Niedballa, E. Haarmann, et al., Uterine activity monitoring during labour - a multi-centre, blinder two-way trial of external tocodynamometry against electrohysteragraphy, Z. Geburtsh. Neonatol., 215 (2011), 199-204.
  • 32. M. J. Rooijakkers, C. Rabotti, S. G. Oei, R. M. Aarts, M. Mischi, Low-complexity intrauterine pressure estimation using the Teager energy operator on electrohysterographic recordings, Physiol. Meas., 35 (2014), 1215-1228.
  • 33. C. Buhimschi, M. B. Boyle,R. E. Garfield, Electrical activity of the human uterus during pregnancy as recorded from the abdominal surface, Obstet. Gynecol., 90 (1997), 102-111.
  • 34. S. Snowden, N. A. B. Simpson, J. J. Walker, A digital system for recording the electrical activity of the uterus, Physiol. Meas., 22 (2001), 673.
  • 35. C. Rabotti1, M. Mischi1, J. O. E. H. van Laar, G. S. Oei, J. W. M. Bergmans, Estimation of internal uterine pressure by joint amplitude and frequency analysis of electrohysterographic signals, Physiol. Meas., 29 (2008), 829-841.
  • 36. M. O. Diab, B. Moslem, M. Khalil, C. Marque, Classification of uterine EMG signals by using normalized wavelet packet energy, 2012 16th IEEE Mediterranean Electrotechnical Conference, 2012. Available from: https://ieeexplore.ieee.org/abstract/document/6196443/.
  • 37. R. Merletti, P. J. Parker, Electromyography: Physiology, engineering and non-invasive applications, John Wiley & Sons, (2004).
  • 38. C. Marque, J. M. G. Duchene, S. Leclercq, G. S. Panczer, J. Chaumont, Uterine ehg processing for obstetrical monitoring, IEEE Trans. Biomed. Eng., 12 (1986), 1182-1187.
  • 39. J. F. Kaiser, On a simple algorithm to calculate the 'energy' of a signal, International conference on acoustics, speech, and signal processing, Available from: https://ieeexplore.ieee.org/abstract/document/115702/.
  • 40. J. F. Kaiser, Some useful properties of Teager's energy operators, 1993 IEEE international conference on acoustics, speech, and signal processing, 1993. Available from: https://ieeexplore.ieee.org/abstract/document/319457.
  • 41. A. D. Robison, N-bit unsigned division via n-bit multiply-add, 17th IEEE Symposium on Computer Arithmetic,2005. Available from: https://ieeexplore.ieee.org/abstract/document/1467632.
  • 42. B. Farhang-Boroujeny, Y. C. Lim, A comment on the computational complexity of sliding FFT, IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., 39 (1992), 875-876.
  • 43. M. Vetterli, H. J. Nussbaumer, Simple FFT and DCT algorithms with reduced number of operations, Signal Process., 6 (1984), 267-278.
  • 44. H. Leman, C. Marque, and J. Gondry, Use of the electrohysterogram signal for characterization of contractions during pregnancy, IEEE Trans. Biomed. Eng., 46 (1999), 1222-1229.
  • 45. W. L. Maner, R. E. Garfield, H. Maul, G. Olson, G. Saade, Predicting term and preterm delivery with transabdominal uterine electromyography, Obstet. Gynecol., 101 (2003), 1254-1260.
  • 46. M. J. Rooijakkers, S. Song, C. Rabotti, S. G. Oei, J. W. M. Bergmans, E. Cantatore, et al., Influence of electrode placement on signal quality for ambulatory pregnancy monitoring, Comput. Math. Methods Med., 2014 (2014).
  • 47. L. Rabiner, K. Steiglitz, The design of wide-band recursive and nonrecursive digital differentiators, IEEE Trans. Audio Electroacoust., 18 (1970), 204-209.
  • 48. M. G. Bellanger, G. Bonnerot, M. Coudreuse, Digital filtering by polyphase network: Application to sample-rate alteration and filter banks, IEEE Trans. Acoust., Speech, Signal Process., 24 (1976), 109-114.
  • 49. J. G. Proakis, D. G. Manolakis, Digital signal processing: Principles, algorithms, and applications. in Pearson Education India, 2001.
  • 50. A. T. Bahill, J. S. Kallman, J. E. Lieberman, Frequency limitations of the two-point central difference differentiation algorithm, Biol. Cybern., 45 (1982), 1-4.
  • 51. L. Rabiner, B. Gold, C. McGonegal, An approach to the approximation problem for nonrecursive digital filters, IEEE Trans. Audio Electroacoust., 18 (1970),83-106.
  • 52. S. Graczyk, J. Jezewski, J. Wrobel, A. Gacek. Abdominal electrohysterogram data acquisition problems and their source of origin, Proceedings of the First Regional Conference, IEEE Engineering in Medicine and Biology Society and 14th Conference of the Biomedical Engineering Society of India, 1995. Available from: https://ieeexplore.ieee.org/abstract/document/511701/.
  • 53. G. Wolfs, H. Rottinghuis, Electrical and mechanical activity of the human uterus during labour, Arch. Gynecol. Obstet., 208 (1970), 373-385.
  • 54. J. G. Planes, J. P. Morucci, H. Grandjean, R. Favretto, External recording and processing of fast electrical activity of the uterus in human parturition, Med. Biol. Eng. Comput., 22 (1984), 585-591


Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved