Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

A novel distance of intuitionistic trapezoidal fuzzy numbers and its-based prospect theory algorithm in multi-attribute decision making model

1 Teaching Department of Basic Subjects, Jiangxi University of Science and Technology, Nanchang, 330013, China
2 School of Software and Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, China

Special Issues: Optimization in decision making process

The aim of this paper is to develop a new decision making method considering decision makers’ psychological behavior for multi-attribute decision making problem under intuitionistic trapezoidal fuzzy environment. We first put forward a new distance measure of intuitionistic trapezoidal fuzzy numbers. Then combining with cumulative prospect theory, we develop a novel decision making method, which can consider risk attitude of decision makers. Finally, an example is given to demonstrate the effectiveness and practicability of the proposed method.
  Article Metrics

Keywords intuitionistic trapezoidal fuzzy number; distance measure; multi-attribute decision making method; prospect theory; risk attitude

Citation: Haiping Ren, Laijun Luo. A novel distance of intuitionistic trapezoidal fuzzy numbers and its-based prospect theory algorithm in multi-attribute decision making model. Mathematical Biosciences and Engineering, 2020, 17(4): 2905-2922. doi: 10.3934/mbe.2020163


  • 1. G. Kou, P. Yang, Y. Peng, F. Xiao, Y. Chen, F. E. Alsaadic, Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision-making methods, Appl. Soft Comput., 86 (2020), 105836.
  • 2. G. Kou, D. Ergu, C. S. Lin, Y. Chen, Pairwise comparison matrix in multiple criteria decision making, Technol. Econ. Dev. Econ., 22 (2016), 738-765.
  • 3. G. Kou, Y. Q. Lu, Y. Peng, Y. Shi, Evaluation of classification algorithms using MCDM and rank correlation, Int. J. Inf. Tech. Decis., 11 (2012), 197-225.
  • 4. R. Joshi, S. Kumar, An exponential Jensen fuzzy divergence measure with applications in multiple attribute decision-making, Math. Probl. Eng., 2018 (2018), 4342098.
  • 5. G. Kou, Y. Peng, G. X. Wang, Evaluation of clustering algorithms for financial risk analysis using MCDM methods, Inform. Sciences, 275 (2014), 1-12
  • 6. H. Garg, K. Kumar, Distance measures for connection number sets based on set pair analysis and its applications to decision-making process, Appl. Intell., 48 (2018), 3346-3359.
  • 7. L. A. Zadeh, Fuzzy Sets, Inform. Control, 8 (1965), 338-353.
  • 8. T. Jie, F. Meng, A consistency-based method to decision making with triangular fuzzy multiplicative preference relations, Int. J. Fuzzy Syst., 19 (2017), 1317-1332.
  • 9. A. Ebrahimnejad, J. L. Verdegay, H. Garg, Signed distance ranking based approach for solving bounded interval-valued fuzzy numbers linear programming problems, Int. J. Intell. Syst., 34 (2019), 2055-2076.
  • 10. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87-96.
  • 11. K. T. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Set. Syst., 31 (1989), 343-349.
  • 12. H. Garg, An improved cosine similarity measures for intuitionistic fuzzy sets and their applications to decision-making process, Hacet. J. Math. Stat., 47 (2018), 1585-1601.
  • 13. M. I. Ali, F. Feng, T. Mahmood, I. Mahmood, H. Faizan, A graphical method for ranking Atanassov's intuitionistic fuzzy values using the uncertainty index and entropy, Int. J. Intell. Syst., 34 (2019), 2692-2712.
  • 14. F. Feng, M. Liang, H. Fujita, R. R.Yager, X. Y. Liu, Lexicographic orders of intuitionistic fuzzy values and their relationships, Mathematics, 7 (2019), 166.
  • 15. P. Liu, Multiple attribute group decision making method based on interval-valued intuitionistic fuzzy power heronian aggregation operators, Comput. Ind. Eng., 108 (2017), 199-212.
  • 16. H. Garg, K. Kumar, A novel exponential distance and its based TOPSIS method for interval-valued intuitionistic fuzzy sets using connection number of SPA theory, Artif. Intell. Rev., 53 (2020), 595-624.
  • 17. H. Garg, K. Kumar, Novel distance measures for cubic intuitionistic fuzzy sets and their applications to pattern recognitions and medical diagnosis, Granul. Comput., 5 (2020), 169-184.
  • 18. A. Si, S. Das, S. Kar, An approach to rank picture fuzzy numbers for decision making problems, Decis. Ma-Appl. Manage. Eng., 2 (2019), 54-64.
  • 19. F. Liu, A. W. Guan, V. Lukovac, M. Vukić, A multicriteria model for the selection of the transport service provider: A single valued neutrosophic DEMATEL multicriteria model, Decis. Ma-Appl. Manage. Eng., 1 (2018), 121-130.
  • 20. J. H. Hu, L. Pan, Y. Yang, H. W. Chen, A group medical diagnosis model based on intuitionistic fuzzy soft sets, Appl. Soft Comput., 77 (2019), 453-466.
  • 21. F. Feng, H. Fujita, M. I. Ali, R. R. Yager, X. Liu, Another view on generalized intuitionistic fuzzy soft sets and related multiattribute decision making methods, IEEE T. Fuzzy Syst., 27 (2018), 474-488.
  • 22. H. Garg, R. Arora, Generalized and group-based generalized intuitionistic fuzzy soft sets with applications in decision-making, Appl. Intell., 48 (2018), 343-356.
  • 23. T. M. Athira, J. Sunil, H. Garg, Entropy and distance measures of Pythagorean fuzzy soft sets and their applications, J. Intell. Fuzzy Syst., 37 (2019), 4071-4084.
  • 24. P. D. Liu, H. Gao, J. H. Ma, Novel green supplier selection method by combining quality function deployment with partitioned Bonferroni mean operator in interval type-2 fuzzy environment, Inform. Sciences, 490 (2019), 292-316.
  • 25. P. D. Liu, P. Wang, Multiple-attribute decision-making based on archimedean Bonferroni operators of q-rung orthopair fuzzy numbers, IEEE T. Fuzzy Syst., 27 (2019), 834-848.
  • 26. P. D. Liu, S. Y. Ma, P. Wang, Multiple-attribute group decision-making based on q-rung orthopair fuzzy power Maclaurin symmetric mean operators, IEEE Trans. Syst. Man Cybern. Syst., 2018 (2018).
  • 27. M. H. Shu, C. H. Cheng, J. R. Chang, Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly, Microelectron. Reliab., 46 (2006), 2139-2148.
  • 28. J. Q. Wang, Z. Zhang, Programming method of multicriteria decision making based on intuitionistic fuzzy number with incomplete certain information, Control Decis., 23 (2008), 1145-1152.
  • 29. J. Q. Wang, Z. Zhang, Aggregation operators on intuitionistic trapezoidal fuzzy number and its application to multi-criteria decision making problems, J. Syst. Eng. Electron., 20 (2009), 321-326.
  • 30. J. Ye, Expected value method for intuitionistic trapezoidal fuzzy multicriteria decision-making problems, Expert Syst. Appl., 38 (2011), 11730-11734.
  • 31. J. Yuan, C. Li, A new method for multi-attribute decision making with intuitionistic trapezoidal fuzzy random variable, Int. J. Fuzzy Syst., 19 (2017), 15-26.
  • 32. D. Kahneman, A. Tversky, Prospect theory: an analysis of decision under risk, Econometrica, 47 (1979), 263-292.
  • 33. P. D. Liu, Y. Li, An extended MULTIMOORA method for probabilistic linguistic multi-criteria group decision-making based on prospect theory, Comput. Ind. Eng., 136 (2019), 528-545.
  • 34. A. Tversky, D. Kahneman, Advances in prospect theory: cumulative representation of uncertainty, J. Risk Uncertainty, 5 (1992), 297-323.
  • 35. Z. S. Chen, S. H. Xiong, Y. L. Li, G. S. Qian, Approach for intuitionistic trapezoidal fuzzy random prospect decision making based on the combination of parameter estimation and score functions, J. Syst. Eng. Electron., 37 (2015), 851-862.
  • 36. Q. G. Ma, Hesitant fuzzy multi-attribute group decision-making method based on prospect theory, Comput. Eng. Appl., 51 (2015), 249-253.
  • 37. S. Z. Zeng, W. H. Su, J. Chen, Fuzzy decision making with induced heavy aggregation operators and distance measures, J. Intell. Fuzzy Syst., 26 (2014), 127-135.
  • 38. P. Grzegorzewski, Metrics and orders in space of fuzzy numbers, Fuzzy Set. Syst., 97 (1998), 83-94
  • 39. A. I. Ban, L. Coroianu, Nearest interval, triangular and trapezoidal approximation of a fuzzy number preserving ambiguity, Int. J. Approx. Reason., 53 (2012), 805-836
  • 40. U. Sharma, S. Aggarwal, Solving fully fuzzy multi-objective linear programming problem using nearest interval approximation of fuzzy number and interval programming, Int. J. Fuzzy Syst., 20 (2018), 488-499.
  • 41. R. Joshi, S. Kumar, Jensen-Tsalli's intuitionistic fuzzy divergence measure and its applications in medical analysis and pattern recognition, Int. J. Uncertain. Fuzz., 27 (2019),145-169.


Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved