Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A novel distance of intuitionistic trapezoidal fuzzy numbers and its-based prospect theory algorithm in multi-attribute decision making model

1 Teaching Department of Basic Subjects, Jiangxi University of Science and Technology, Nanchang, 330013, China
2 School of Software and Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, China

Special Issues: Optimization in decision making process

The aim of this paper is to develop a new decision making method considering decision makers’ psychological behavior for multi-attribute decision making problem under intuitionistic trapezoidal fuzzy environment. We first put forward a new distance measure of intuitionistic trapezoidal fuzzy numbers. Then combining with cumulative prospect theory, we develop a novel decision making method, which can consider risk attitude of decision makers. Finally, an example is given to demonstrate the effectiveness and practicability of the proposed method.
  Figure/Table
  Supplementary
  Article Metrics

Keywords intuitionistic trapezoidal fuzzy number; distance measure; multi-attribute decision making method; prospect theory; risk attitude

Citation: Haiping Ren, Laijun Luo. A novel distance of intuitionistic trapezoidal fuzzy numbers and its-based prospect theory algorithm in multi-attribute decision making model. Mathematical Biosciences and Engineering, 2020, 17(4): 2905-2922. doi: 10.3934/mbe.2020163

References

  • 1. G. Kou, P. Yang, Y. Peng, F. Xiao, Y. Chen, F. E. Alsaadic, Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision-making methods, Appl. Soft Comput., 86 (2020), 105836.
  • 2. G. Kou, D. Ergu, C. S. Lin, Y. Chen, Pairwise comparison matrix in multiple criteria decision making, Technol. Econ. Dev. Econ., 22 (2016), 738-765.
  • 3. G. Kou, Y. Q. Lu, Y. Peng, Y. Shi, Evaluation of classification algorithms using MCDM and rank correlation, Int. J. Inf. Tech. Decis., 11 (2012), 197-225.
  • 4. R. Joshi, S. Kumar, An exponential Jensen fuzzy divergence measure with applications in multiple attribute decision-making, Math. Probl. Eng., 2018 (2018), 4342098.
  • 5. G. Kou, Y. Peng, G. X. Wang, Evaluation of clustering algorithms for financial risk analysis using MCDM methods, Inform. Sciences, 275 (2014), 1-12
  • 6. H. Garg, K. Kumar, Distance measures for connection number sets based on set pair analysis and its applications to decision-making process, Appl. Intell., 48 (2018), 3346-3359.
  • 7. L. A. Zadeh, Fuzzy Sets, Inform. Control, 8 (1965), 338-353.
  • 8. T. Jie, F. Meng, A consistency-based method to decision making with triangular fuzzy multiplicative preference relations, Int. J. Fuzzy Syst., 19 (2017), 1317-1332.
  • 9. A. Ebrahimnejad, J. L. Verdegay, H. Garg, Signed distance ranking based approach for solving bounded interval-valued fuzzy numbers linear programming problems, Int. J. Intell. Syst., 34 (2019), 2055-2076.
  • 10. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87-96.
  • 11. K. T. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Set. Syst., 31 (1989), 343-349.
  • 12. H. Garg, An improved cosine similarity measures for intuitionistic fuzzy sets and their applications to decision-making process, Hacet. J. Math. Stat., 47 (2018), 1585-1601.
  • 13. M. I. Ali, F. Feng, T. Mahmood, I. Mahmood, H. Faizan, A graphical method for ranking Atanassov's intuitionistic fuzzy values using the uncertainty index and entropy, Int. J. Intell. Syst., 34 (2019), 2692-2712.
  • 14. F. Feng, M. Liang, H. Fujita, R. R.Yager, X. Y. Liu, Lexicographic orders of intuitionistic fuzzy values and their relationships, Mathematics, 7 (2019), 166.
  • 15. P. Liu, Multiple attribute group decision making method based on interval-valued intuitionistic fuzzy power heronian aggregation operators, Comput. Ind. Eng., 108 (2017), 199-212.
  • 16. H. Garg, K. Kumar, A novel exponential distance and its based TOPSIS method for interval-valued intuitionistic fuzzy sets using connection number of SPA theory, Artif. Intell. Rev., 53 (2020), 595-624.
  • 17. H. Garg, K. Kumar, Novel distance measures for cubic intuitionistic fuzzy sets and their applications to pattern recognitions and medical diagnosis, Granul. Comput., 5 (2020), 169-184.
  • 18. A. Si, S. Das, S. Kar, An approach to rank picture fuzzy numbers for decision making problems, Decis. Ma-Appl. Manage. Eng., 2 (2019), 54-64.
  • 19. F. Liu, A. W. Guan, V. Lukovac, M. Vukić, A multicriteria model for the selection of the transport service provider: A single valued neutrosophic DEMATEL multicriteria model, Decis. Ma-Appl. Manage. Eng., 1 (2018), 121-130.
  • 20. J. H. Hu, L. Pan, Y. Yang, H. W. Chen, A group medical diagnosis model based on intuitionistic fuzzy soft sets, Appl. Soft Comput., 77 (2019), 453-466.
  • 21. F. Feng, H. Fujita, M. I. Ali, R. R. Yager, X. Liu, Another view on generalized intuitionistic fuzzy soft sets and related multiattribute decision making methods, IEEE T. Fuzzy Syst., 27 (2018), 474-488.
  • 22. H. Garg, R. Arora, Generalized and group-based generalized intuitionistic fuzzy soft sets with applications in decision-making, Appl. Intell., 48 (2018), 343-356.
  • 23. T. M. Athira, J. Sunil, H. Garg, Entropy and distance measures of Pythagorean fuzzy soft sets and their applications, J. Intell. Fuzzy Syst., 37 (2019), 4071-4084.
  • 24. P. D. Liu, H. Gao, J. H. Ma, Novel green supplier selection method by combining quality function deployment with partitioned Bonferroni mean operator in interval type-2 fuzzy environment, Inform. Sciences, 490 (2019), 292-316.
  • 25. P. D. Liu, P. Wang, Multiple-attribute decision-making based on archimedean Bonferroni operators of q-rung orthopair fuzzy numbers, IEEE T. Fuzzy Syst., 27 (2019), 834-848.
  • 26. P. D. Liu, S. Y. Ma, P. Wang, Multiple-attribute group decision-making based on q-rung orthopair fuzzy power Maclaurin symmetric mean operators, IEEE Trans. Syst. Man Cybern. Syst., 2018 (2018).
  • 27. M. H. Shu, C. H. Cheng, J. R. Chang, Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly, Microelectron. Reliab., 46 (2006), 2139-2148.
  • 28. J. Q. Wang, Z. Zhang, Programming method of multicriteria decision making based on intuitionistic fuzzy number with incomplete certain information, Control Decis., 23 (2008), 1145-1152.
  • 29. J. Q. Wang, Z. Zhang, Aggregation operators on intuitionistic trapezoidal fuzzy number and its application to multi-criteria decision making problems, J. Syst. Eng. Electron., 20 (2009), 321-326.
  • 30. J. Ye, Expected value method for intuitionistic trapezoidal fuzzy multicriteria decision-making problems, Expert Syst. Appl., 38 (2011), 11730-11734.
  • 31. J. Yuan, C. Li, A new method for multi-attribute decision making with intuitionistic trapezoidal fuzzy random variable, Int. J. Fuzzy Syst., 19 (2017), 15-26.
  • 32. D. Kahneman, A. Tversky, Prospect theory: an analysis of decision under risk, Econometrica, 47 (1979), 263-292.
  • 33. P. D. Liu, Y. Li, An extended MULTIMOORA method for probabilistic linguistic multi-criteria group decision-making based on prospect theory, Comput. Ind. Eng., 136 (2019), 528-545.
  • 34. A. Tversky, D. Kahneman, Advances in prospect theory: cumulative representation of uncertainty, J. Risk Uncertainty, 5 (1992), 297-323.
  • 35. Z. S. Chen, S. H. Xiong, Y. L. Li, G. S. Qian, Approach for intuitionistic trapezoidal fuzzy random prospect decision making based on the combination of parameter estimation and score functions, J. Syst. Eng. Electron., 37 (2015), 851-862.
  • 36. Q. G. Ma, Hesitant fuzzy multi-attribute group decision-making method based on prospect theory, Comput. Eng. Appl., 51 (2015), 249-253.
  • 37. S. Z. Zeng, W. H. Su, J. Chen, Fuzzy decision making with induced heavy aggregation operators and distance measures, J. Intell. Fuzzy Syst., 26 (2014), 127-135.
  • 38. P. Grzegorzewski, Metrics and orders in space of fuzzy numbers, Fuzzy Set. Syst., 97 (1998), 83-94
  • 39. A. I. Ban, L. Coroianu, Nearest interval, triangular and trapezoidal approximation of a fuzzy number preserving ambiguity, Int. J. Approx. Reason., 53 (2012), 805-836
  • 40. U. Sharma, S. Aggarwal, Solving fully fuzzy multi-objective linear programming problem using nearest interval approximation of fuzzy number and interval programming, Int. J. Fuzzy Syst., 20 (2018), 488-499.
  • 41. R. Joshi, S. Kumar, Jensen-Tsalli's intuitionistic fuzzy divergence measure and its applications in medical analysis and pattern recognition, Int. J. Uncertain. Fuzz., 27 (2019),145-169.

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved