Research article Special Issues

A novel compliant surgical robot: Preliminary design analysis

  • Received: 31 July 2019 Accepted: 27 November 2019 Published: 19 December 2019
  • A robotic surgical system capable of performing minimally invasive surgery (MIS) is proposed in this paper. Based on the requirements of MIS, a compliant, seven- degrees of freedom (7-DOF) pneumatically actuated mechanism is designed. A remote center of motion (RCM) as a parallelogram mechanism for holding the laparoscopic camera is also developed. The operating workspace of robotic surgical system is determined considering the physical constraints imposed by mechanical joints. The simulation results show that the robotic system meets the design requirement. This research will lay a good foundation for the development of a compliant surgical robot to assist in MIS.

    Citation: Akim Kapsalyamov, Shahid Hussain, Prashant K. Jamwal. A novel compliant surgical robot: Preliminary design analysis[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 1944-1958. doi: 10.3934/mbe.2020103

    Related Papers:

  • A robotic surgical system capable of performing minimally invasive surgery (MIS) is proposed in this paper. Based on the requirements of MIS, a compliant, seven- degrees of freedom (7-DOF) pneumatically actuated mechanism is designed. A remote center of motion (RCM) as a parallelogram mechanism for holding the laparoscopic camera is also developed. The operating workspace of robotic surgical system is determined considering the physical constraints imposed by mechanical joints. The simulation results show that the robotic system meets the design requirement. This research will lay a good foundation for the development of a compliant surgical robot to assist in MIS.


    加载中


    [1] W. Peh, CT-guided percutaneous biopsy of spinal lesions, Biomed. Imag. Interv. J., 2 (2006), e25.
    [2] S. Yinhao, A. Gang, Z. Jianxun, C. Yanqiu, Medical robotic system for minimally invasive spine surgery, 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008 (2008), 1703-1706.
    [3] D. E. Ott, Unique laparoscopic access port for improving gas delivery, quality and surgical outcomes, J. Med. Devices, 8 (2014), 030916.
    [4] A. Talasaz, A. L. Trejos, S. Perreault, H. Bassan, R. Patel, A dual-arm 7-degrees-of-freedom haptics-enabled teleoperation test bed for minimally invasive surgery, J. Med. Devices, 8 (2014), 041004.
    [5] A. Pourghodrat, C. Nelson, D. Oleynikov, Electrohydraulic robotic manipulator with multiple instruments for minimally invasive surgery, J. Med. Devices, 8 (2014), 030919.
    [6] A. Pourghodrat, C. Nelson, Miniature fluidic actuators for surgical robotics, J. Med. Devices, 8 (2014), 030920.
    [7] H. Kumon, M. Murai, S. Baba, Endourooncology: New horizons in endourology, Springer, (2010), 39-46.
    [8] M. Hadavan, A. Mirbagheri, H. Salarieh, F. Farahmand, Design of a force-reflective master robot for haptic telesurgery applications: Robomaster1, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2011 (2011), 7037-7040.
    [9] K. Y. Kim, H. S. Song, J. W. Suh, J. J. Lee, A novel surgical manipulator with workspace-conversion ability for telesurgety, IEEE/ASME Transact. Mechatron., 18 (2013), 200-211.
    [10] R. E. Goldman, A. Bajo, N. Simaan, Compliant motion control for continuum robots with intrinsic actuation sensing, IEEE International Conference on Robotics and Automation, 2011 (2011), 1126-1132.
    [11] K. Cleary, C. Nguyen, State of the art in surgical robotics: Clinical applications and technology challenges, Comput. Aided Surg., 6 (2001), 312-328.
    [12] A. E. Quaid, R. A. Abovitz, Haptic information displays for computer-assisted surgery, Proc. IEEE Int. Conf. Robotics and Automation, 2 (2002), 2092-2097.
    [13] D. Stoianovici, Robotic surgery, World J. Urology, 18 (2000), 289-295.
    [14] M. Jakopec, S. J. Harris, F. R. Y. Baena, P. Gomes, J. Cobb, B. L. Davies, The first clinical application of a hands-on robotic knee surgery system, Comput. Aided Surg., 6 (2001), 329-339.
    [15] S. M. Sajadi, S. H. Mahdioun, A. A. Ghavifekr, Design of mechanical structure and tracking control system for 5 DOF surgical robot, 21st Iranian Conference on Electrical Engineering (ICEE), 2013 (2013), 1-6.
    [16] B. F. Yousef, F. M. T. Aiash, A mechanism for surgical tool manipulation, 9th Asian Control Conference (ASCC), 2013 (2013), 1-5.
    [17] Y. Ping-Lang, K. Zhi-Wei, L. Tien-Sen, L. Chung-Wei, Development of a new safety-enhanced surgical robot using the hexaglide structure, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), 3 (2004), 2162-2167.
    [18] J. Funda, R. Taylor, B. Eldridge, S. Gomory, K. Gruben, Constrained Cartesian motion control for teleoperated surgical robots, IEEE Transact. Robot. Automat., 12 (1996), 453-465.
    [19] H. Seno, K. Kawamura, Y. Kobayashi, M. G. Fujie, Pilot study of design method for surgical robot using workspace reproduction system, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2011 (2011), 4542-4545.
    [20] B. Fei, W. S. Ng, The safety issues of medical robotics, Reliab. Eng. Syst. Safety, 73 (2001), 183-192.
    [21] Q. Du, Q. Huang, L. Tian, C. Liu, Mechanical design and control system of a minimally invasive surgical robot system, International Conference on Mechatronics and Automation, 2006 (2006), 1120-1125.
    [22] Y. Fu, G. Niu, B. Pan, K. Li, S. Wang, Design and optimization of remote center motion mechanism of minimally invasive surgical robotics, IEEE International Conference on Robotics and Biomimetics (ROBIO), 2013 (2013), 774-779.
    [23] R. C. O. Locke, R. V. Patel, Optimal remote center-of-motion location for robotics-assisted minimally-invasive surgery, IEEE International Conference on Robotics and Automation, 2007 (2007), 1900-1905.
    [24] L. Yang, C. B. Chng, C. K. Chui, D. Lau, Model-based design analysis for programmable remote center of motion in minimally invasive surgery, IEEE Conference on Robotics, Automation and Mechatronics, 2010 (2010), 84-89.
    [25] M. M. Dalvand, B. Shirinzadeh, Remote centre-of-motion control algorithms of 6-RRCRR parallel robot assisted surgery system (PRAMiSS), IEEE International Conference on Robotics and Automation, 2012 (2012), 3401-3406.
    [26] J. T. Wilson, T. Tsu-Chin, J. Hubschman, S. Schwartz, Evaluating remote centers of motion for minimally invasive surgical robots by computer vision, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2010 (2010), 1413-1418.
    [27] U. Hagn, R. Konietschke, A. Tobergte, MiroSurge: A versatile system for research in endoscopic telesurgery, Int. J. Comput. Assist. Radiol. Surg., 5 (2010), 183-193.
    [28] U. Hagn, M. Nickl, S. Jörg, The DLR MIRO: A versatile lightweight robot for surgical applications, Industr. Robot Int. J., 35 (2008), 324-336.
    [29] R. Konietschke, U. Hagn, M. Nickl, S. Jörg, A. Tobergte, G. Passig, et al., The dlr mirosurge—a robotic system for surgery, IEEE International Conference on Robotics and Automation, 2009 (2009), 1589-1590.
    [30] M. Stark, T. Benhidjeb, S. Gidaro, The future of telesurgery: A universal system with haptic sensation, J. Turkish-German Gynecol. Assoc., 13 (2012), 74-76.
    [31] H. Choi, H. J. Kim, Y. Lim, H. Kwak, J. Jang, J. Won, Conically shaped remote center-of-motion mechanism for single-incision surgery, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013 (2013), 3604-3609.
    [32] P. Li, H. M. Yip, D. Navarro-Alarcon, Y. Liu, C. F. M. Tong, I. Leung, Development of a robotic endoscope holder for nasal surgery, IEEE International Conference on Information and Automation (ICIA), 2013 (2013), 1194-1199.
    [33] I. G. French, C. S. Cox, Modelling, design and control of a modern electropneumatic actuator, IEE Proceedings D - Control Theory and Applications, 137 (1990), 145-155.
    [34] K. Ikuta, T. Kato, H. Ooe, S. Ando, Surgery recorder system" for recording position and force of forceps during laparoscopic surgery, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2007 (2007), 1-6.
    [35] J. Y. Lai, C. H. Menq, R. Singh, Accurate Position Control of a Pneumatic Actuator, American Control Conference, 1989 (1989), 1497-1502.
    [36] N. Kemmer, Vector Analysis, Cambridge University Press, 1977.
    [37] I. Uzmay, S. Yildirim, Geometric and algebraic approach to the inverse kinematics of four-link manipulators, Robotica, 12 (1994), 59-64.
    [38] S. Kadry, Mathematical Formulas for Industrial and Mechanical Engineering, Elsevier, (2014), 31-51.
    [39] S. Favorov, Discrete unbounded sets in a finite dimensional space and beyond, Electron. Notes Discrete Math., 43 (2013), 389-395.
    [40] A. Zollanvari, E. R. Dougherty, Moments and root-mean-square error of the Bayesian MMSE estimator of classification error in the Gaussian model, Pattern Recogn., 47 (2014), 2178-2192.
    [41] S. K. Agrawal, S. K. Banala, A. Fattah, V. Sangwan, V. Krishnamoorthy, J. P. Scholz, et al., Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton, IEEE Trans. Neural Syst. Rehabil. Eng., 15 (2007), 410-420.
    [42] S. Mas-Coma, V. H. Agramunt, M. A. Valero, Neurological and ocular fascioliasis in humans, Adv. Parasitol., 84 (2014), 27-149.
    [43] J. L. Sun, S. Y. Xing, Short-term outcome of laparoscopic surgery versus open surgery on colon carcinoma: A meta-analysis, Math. Biosci. Eng., 16 (2019), 4645-4659.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4879) PDF downloads(757) Cited by(2)

Article outline

Figures and Tables

Figures(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog