Citation: Baoxiang Zhang, Yongli Cai, Bingxian Wang, Weiming Wang. Dynamics and asymptotic profiles of steady states of an SIRS epidemic model in spatially heterogenous environment[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 893-909. doi: 10.3934/mbe.2020047
[1] | R. May and R. Anderson, Spatial heterogeneity and the design of immunization programs, Math. Biosci., 72 (1984), 83-111. |
[2] | H. Hethcote and J. W. Van Ark, Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation, and immunization programs, Math. Biosci., 84 (1987), 85-118. |
[3] | V. Capasso, Mathematical structures of epidemic systems, volume 97. Springer, 1993. |
[4] | M. E. Alexander and S. M. Moghadas. Periodicity in an epidemic model with a generalized nonlinear incidence, Math. Biosci., 189 (2004), 75-96. |
[5] | W. D. Wang, Epidemic models with nonlinear infection forces, Math. Biosci. Eng., 3 (2006), 267-279. |
[6] | D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-429. |
[7] | Y. Cai, Y. Kang and W. M. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comp., 305 (2017), 221-240. |
[8] | W. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of sirs epidemiological models, J. Math. Biol., 23 (1986), 187-204. |
[9] | W. Liu, H. W. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380. |
[10] | H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653. |
[11] | B. Fred and C.-C. Carlos, Mathematical models in population biology and epidemiology (Second Edition). Springer, 2012. |
[12] | Y. Cai, Y. Kang, M. Banerjee, et al., A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differ. Equations, 259 (2015), 7463-7502. |
[13] | S. Yuan and B. Li, Global dynamics of an epidemic model with a ratio-dependent nonlinear incidence rate, Discrete Dyn. Nat. Soc., 2009 (2009), 609306. |
[14] | C. Neuhauser, Mathematical Challenges in Spatial Ecology, Notices AMS, 48 (2001), 1304-1314. |
[15] | S. Ruan, Spatial-Temporal Dynamics in Nonlocal Epidemiological Models, In: Takeuchi Y., Iwasa Y., Sato K. (eds) Mathematics for Life Science and Medicine. Springer, Berlin, Heidelberg, 2007. |
[16] | W. E. Fitzgibbon, M. Langlais and J. J. Morgan, A reaction-diffusion system modeling direct and indirect transmission of diseases, Discrete Cont. Dyn.-B, 4 (2004), 893-910. |
[17] | Z. Wang and J. Wu, Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission, P. Roy. Soc. A-Math. Phy., 466 (2010), 237-261. |
[18] | Y. Cai and W. M. Wang, Dynamics of a parasite-host epidemiological model in spatial heterogeneous environment, Discrete Cont. Dyn.-B, 20 (2015), 989-1013. |
[19] | Y. Cai and W. M. Wang, Fish-hook bifurcation branch in a spatial heterogeneous epidemic model with cross-diffusion, Nonl. Anal. Real World Appl., 30 (2016), 99-125. |
[20] | W. M. Wang, X. Gao, Y. Cai, et al., Turing patterns in a diffusive epidemic model with saturated infection force, J. Franklin Inst., 355 (2018), 7226-7245. doi: 10.1016/j.jfranklin.2018.07.014 |
[21] | Y. Cai, Y. Kang, M. Banerjee, et al., Complex dynamics of a host-parasite model with both horizontal and vertical transmissions in a spatial heterogeneous environment, Nonl. Anal. Real World Appl., 40 (2018), 444-465. |
[22] | P. Magal, G. Webb and Y. Wu, On a vector-host epidemic model with spatial structure, Nonlinearity, 31 (2018), 5589-5614. |
[23] | Y. Cai, Z. Ding, B. Yang, et al., Transmission dynamics of Zika virus with spatial structure-A case study in Rio de Janeiro, Brazil, Phys. A, 514 (2019), 729-740. |
[24] | J. Ge, K. Kim, Z. Lin, et al., An SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differ. Equations, 259 (2015), 5486-5509. |
[25] | Y. Cai, X. Lian, Z. Peng, et al., Spatiotemporal transmission dynamics for influenza disease in a heterogenous environment, Nonl. Anal. Real, 46 (2019), 178-194. |
[26] | E. E. Holmes, M. A. Lewis, J. E. Banks, et al., Partial differential equations in ecology: Spatial interactions and population dynamics, Ecology, 75 (1994), 17-29. |
[27] | T. Caraco, M. Duryea, G. Gardner, et al., Host spatial heterogeneity and extinction of an SIS epidemic, J. Theor. Biol., 192 (1998), 351-361. |
[28] | A. L. LLoyd and R. M. May, Spatial heterogeneity in epidemic models, J. Theor. Biol., 179 (1996), 1-11. |
[29] | J. Dushoff and S. Levin, The effects of population heterogeneity on disease invasion, Math. Biosci., 128 (1995), 25-40. |
[30] | S. Merler and M. Ajelli, The role of population heterogeneity and human mobility in the spread of pandemic influenza, Proc. R. Soc. B, 277 (2010), 557-565. |
[31] | B. T. Grenfell, O. N. Bjornstad and J. Kappey, Travelling waves and spatial hierarchies in measles epidemics, Nature, 414 (2001), 716-723. |
[32] | M. J. Keeling, M. E. Woolhouse; D. J. Shaw, et al., Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape, Science, 294 (2001), 813-817. doi: 10.1126/science.1065973 |
[33] | V. Colizza, A. Barrat, M. Barthelemy, et al., The role of the airline transportation network in the prediction and predictability of global epidemics, Proc. Natl. Acad. Sci. USA, 103 (2006), 2015-2020. |
[34] | L. Hufnagel, D. Brockmann and T. Geisel, Forecast and control of epidemics in a globalized world, Proc. Natl. Acad. Sci. USA, 101 (2004), 15124-15129. |
[35] | D. Henry and D. B. Henry, Geometric theory of semilinear parabolic equations, Springer-Verlag Berlin, 1981. |
[36] | M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, Prentice-Hall, New Jersey, 1967. |
[37] | K. Yamazaki and X. Wang, Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model, Discrete Cont. Dyn-B, 21 (2017), 1297-1316. |
[38] | Z. Du and R. Peng, A priori L^{∞} estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016), 1429-1439. |
[39] | N. K. Vaidya, F.-B. Wang and X. Zou, Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment, Discrete Cont. Dyn.-B, 17 (2013), 2829-2848. |
[40] | O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R_{0} in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. |
[41] | P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. |
[42] | L. J. S. Allen, B. M. Bolker, Y. Lou, et al., Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Cont. Dyn-A, 21 (2008), 1-20. |
[43] | R. Peng and X. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471. |
[44] | W. D. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Sys., 11 (2012), 1652-1673. |
[45] | Y. Lou and T. Nagylaki, Evolution of a semilinear parabolic system for migration and selection without dominance, J. Differ. Equations, 225 (2006), 624-665. |
[46] | X. Zhao, J. Borwein and P. Borwein, Dynamical systems in population biology, volume 16. Springer, 2003. |
[47] | P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275. |
[48] | M. A. Pino, A priori estimates and applications to existence-nonexistence for a semilinear elliptic system, Indiana U. Math. J., 43 (1994), 77-129. |