Citation: Zhenzhen Shi, Huidong Cheng, Yu Liu, Yanhui Wang. Optimization of an integrated feedback control for a pest management predator-prey model[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 7963-7981. doi: 10.3934/mbe.2019401
[1] | H. Guo and X. Song, An impulsive predator-prey system with modified Leslie-Gower and Holling type Ⅱ schemes, Chaos Solitons Fract., 36 (2008), 1320–1331. |
[2] | R. Kooij, J. Arus and A. Embid, Limit cycles in the Holling-Tanner model, Publicacions Matematiques, 41 (1997), 149–167. |
[3] | E. Saez and E. Gonzalez-Olivares, Dynamics of a predator-prey model, Siam J. Appl. Math., 59 (1999), 1867–1878. |
[4] | F. Zhu, X. Meng and T. Zhang, Optimal harvesting of a competitive n-species stochastic model with delayed diffusions, Math. Biosci. Eng., 16 (2019), 1554–1574. |
[5] | Y. Li, Y. Li, Y. Liu, et al., Stability analysis and control optimization of a prey-predator model with linear feedback control, Discrete Dyn. Nature Soc., 2018 (2018), 4945728. |
[6] | C. Li and S. Tang, Analyzing a generalized pest-natural enemy model with nonlinear impulsive control, Open Math., 16 (2018), 1390–1411. |
[7] | J. Gu, Y. Zhang and H. Dong, Dynamic behaviors of interaction solutions of (3+1)-dimensional shallow water wave equation, Comput. Math. Appl., 76 (2018), 1408–1419. |
[8] | Z. Shi, J. Wang, Q. Li, et al., Control optimization and homoclinic bifurcation of a prey-predator model with ratio-dependent, Adv. Differ. Equ., 2019 (2019), 2. |
[9] | Y. Tian, S. Tang and R. A. Cheke, Nonlinear state-dependent feedback control of a pest-natural enemy system, Nonlinear Dyn., 94 (2018), 2243–2263. |
[10] | Y. Li, H. Cheng, J. Wang, et al, Dynamic analysis of unilateral diffusion Gompertz model with impulsive control strategy, Adv. Differ. Equ., 2018 (2018), 32. |
[11] | T. Zhang, Y. Song, T. Zhang, et al, A stage-structured predator-prey SI model with disease in the prey and impulsive effects, Math. Model. Anal., 18 (2013), 505–528. |
[12] | Z. Shi, Y. Li and H. Cheng, Dynamic analysis of a pest management smith model with impulsive state feedback control and continuous delay, Mathematics, 7 (2019), 591. |
[13] | Z. Jiang, X. Bi, T. Zhang, et al., Global hopf bifurcation of a delayed phytoplankton-zooplankton system considering toxin producing effect and delay dependent coefficient, Math. Biosci. Eng., 16 (2019), 3807–3829. |
[14] | Y. Li, H. Cheng and Y. Wang, A Lycaon pictus impulsive state feedback control model with Allee effect and continuous time delay, Adv. Differ. Equ., 2018 (2018), 367. |
[15] | K. Liu, T. Zhang and L. Chen, State-dependent pulse vaccination and therapeutic strategy in an SI epidemic model with nonlinear incidence rate, Comput. Math. Method. M., 2019 (2019), article ID 3859815. |
[16] | F. Wang, B. Chen, Y. Sun, et al., Finite time control of switched stochastic nonlinear systems, Fuzzy Set. Syst., 35 (2019), 140–152. |
[17] | S. Tang, X. Tan, J. Yang, et al., Periodic solution bifurcation and spiking dynamics of impacting predator-prey dynamical model, Int. J. Bifurcat. Chaos, 28 (2018), 1850147. |
[18] | G. Pang and L. Chen, Periodic solution of the system with impulsive state feedback control, Nonlinear Dyn., 78 (2014), 743–753. |
[19] | Z. Zhao, L. Pang and X. Song, Optimal control of phytoplankton fish model with the impulsive feedback control, Nonlinear Dyn., 88 (2017), 2003–2011. |
[20] | Y. Gong and J. Huang, Bogdanov-takens bifurcation in a Leslie-Gower predator-prey model with prey harvesting, Acta Math. Appl. Sin-E, 30 (2014), 239–244. |
[21] | T. Zhang, X. Meng and Y. Song, The dynamics of a high-dimensional delayed pest management model with impulsive pesticide input and harvesting prey at different fixed moments, Nonlinear Dyn., 64 (2011), 1–12. |
[22] | J. Jiao, L. Chen, J. Nieto, et al., Permanence and global attractivity of stage-structured predator-prey model with continuous harvesting on predator and impulsive stocking on prey, Appl. Math. Mech., 195 (2008), 316–325. |
[23] | Y. Pei, C. Li and L. Chen, Continuous and impulsive harvesting strategies in a stage-structured predator-prey model with time delay, Math. Comput. Simulat., 79 (2009), 2994–3008. |
[24] | J. Jiao, S. Cai and L. Li, Dynamics of a periodic switched predator-prey system with impulsive harvesting and hibernation of prey population, J. Franklin I., 353 (2016), 3818–3834. |
[25] | K. Sun, T. Zhang and Y. Tian, Dynamics analysis and control optimization of a pest management predator-prey model with an integrated control strategy, Appl. Math. Comput., 292 (2017), 253–271. |
[26] | S. Tang and L. Chen, Global attractivity in a food-limited population model with impulsive effects, J. Math. Anal. Appl., 292 (2004), 211–221. |
[27] | R. N. Guedes, G. Smagghe, J. D. Stark, et al., Pesticide-induced stress in arthropod pests for optimized integrated pest management programs, Ann. Rev. Entomol., 61 (2015), 43. |
[28] | P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213–245. |
[29] | F. Liu, Q. Xue and K. Yabuta, Boundedness and continuity of maximal singular integrals and maximal functions on triebel-lizorkin spaces, Sci. China-Math., Mathematics, Doi: 10.1007/s11425-017-9416-5. |
[30] | J. Wang, H. Cheng, X. Meng, et al., Geometrical analysis and control optimization of a predator-prey model with multi state-dependent impulse, Adv. Differ. Equ., 2017 (2017), 252. |
[31] | W. Lv and W. Fang, Adaptive tracking control for a class of uncertain nonlinear systems with infinite number of actuator failures using neural networks, Adv. Differ. Equ., 2017 (2017), 374. |
[32] | Z. Zhao, Z. Li and L. Chen, Existence and global stability of periodic solution for impulsive predatorprey model with diffusion and distributed delay, J. Appl. Math. Comput., 33 (2010), 389–410. |
[33] | P. H. Leslie and J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219–234. |
[34] | H. Liu and H. Cheng, Dynamic analysis of a prey-predator model with state-dependent control strategy and square root response function, Adv. Differ. Equ., 2018 (2018), 63. |
[35] | J. Wang, H. Cheng, H. Liu, et al., Periodic solution and control optimization of a prey-predator model with two types of harvesting, Adv. Differ. Equ., 2018 (2018), 41. |
[36] | T. Liu and H. Dong, The Prolongation Structure of the Modified Nonlinear Schrödinger Equation and Its Initial-Boundary Value Problem on the Half Line via the Riemann-Hilbert Approach Mathematics, 7 (2019), 170. |
[37] | Q. Wang, Y. Zhang, Z. Wang, et al., Periodicity and attractivity of a ratio-dependent Leslie system with impulses, J. Math. Anal. Appl., 376 (2011), 212–220. |
[38] | S. Tang, B. Tang, A. Wang,et al., Holling Ⅱ predator-prey impulsive semi-dynamic model with complex Poincaré map, Nonlinear Dyn., 81 (2015), 1575–1596. |
[39] | T. Zhang, X. Liu, X. Meng, et al., Spatio-temporal dynamics near the steady state of a planktonic system, Comput. Math. Appl., 75 (2018), 4490–4504. |
[40] | M. Han, L. Zhang, Y. Wang, et al., The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations, Nonlinear Anal-Real., 47 (2019), 236–250. |
[41] | F. Liu, Z. Fu and S. T. Jhang, Boundedness and continuity of marcinkiewicz integrals associated to homogeneous mappings on Triebel-Lizorkin spaces, Front. Math. China, 14 (2019), 95–122. |
[42] | F. Liu, Rough maximal functions supported by subvarieties on Triebel-Lizorkin spaces Revista de la Real Academia de Ciencias Exactas, F´ ısicas y Naturales. Serie A. Matemáticas, 112 (2018), 593–614. |
[43] | X. Meng, F. Li and S. Gao, Global analysis and numerical simulations of a novel stochastic ecoepidemiological model with time delay, Appl. Math. Comput., 339 (2018), 701–726. |
[44] | R. P. Gupta and M. Banerjee, Bifurcation analysis and control of Leslie-Gower predator-prey model with Michaelis-Menten type prey-harvesting, Differ. Equ. Dyn. Syst., 20 (2012), 339–366. |
[45] | Z. Zhao, L. Yang and L. Chen, Impulsive perturbations of a predator-prey system with modified Leslie-Gower and Holling type Ⅱ schemes J. Appl. Math. Comput., 35 (2011), 119–134. |
[46] | C. Wei and L. Chen, A Leslie-Gower pest manangement model with impulsive state feedback control, J. Biomath., 27 (2012), 621–628. |
[47] | J. D. Flores and E. González-Olivares, A modified Leslie-Gower predator-prey model with ratiodependent functional response and alternative food for the predator, Math. Methods Appl. Sci., 40 (2017), 2313-2328. |
[48] | Z. Liang and H. Pan, Qualitative analysis of a ratio-dependent Holling-Tanner model, Math. Anal. Appl., 334 (2007), 954–964. |
[49] | K. Sun, T. Zhang and Y. Tian, Theoretical study and control optimization of an integrated pest management predator-prey model with power growth rate, Math. Biosci., 279 (2012), 13–26. |
[50] | C. Wei, J. Liu and L. Chen, Homoclinic bifurcation of a ratio-dependent predator-prey system with impulsive harvesting, Nonlinear Dyn., (2017), 1–12. |
[51] | Z. Liang, X. Zeng, G. Pang, et al., Periodic solution of a Leslie predator-prey system with ratio-dependent and state impulsive feedback control Nonlinear Dyn., (2017), 1–15. |
[52] | Y. Tian, K. Sun and L. Chen, Geometric approach to the stability analysis of the periodic solution in a semi-continuous dynamic system, Int. J. Biomath., 7 (2014), 1450018. |
[53] | C. J. Edholm, B. Tenhumberg, C. Guiver, et al., Management of invasive insect species using optimal control theory, Ecol. Model., 381 (2018), 36–45. |