Citation: Kazunori Sato. Basic reproduction number of SEIRS model on regular lattice[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 6708-6727. doi: 10.3934/mbe.2019335
[1] | O. Diekmann, H. Heesterbeek and T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princeton University Press, Princeton and Oxford, 2013. |
[2] | O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R_{0} in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. |
[3] | P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. |
[4] | C. Castillo-Chavez, Z. Feng and W. Huang, On the computation of $\mathcal{R}_0$ and its role on global stability, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, Springer, New York (2002), 229–250. |
[5] | M. Martcheva, An Introduction to Mathematical Epidemiology, Springer: New York, 2015, 16. |
[6] | K. Saeki and A. Sasaki, The role of spatial heterogeneity in the evolution of local and global infections of viruses, PLoS Comput. Biol., 14 (2018), e1005952. |
[7] | W. O. Kermack and A. G. Mc.Kendrick, A contributions to the mathematical theory of epidemics, Proc. R. Soc. A, 115 (1991), 700–721. |
[8] | M. J. Keeling, The effects of local spatial structure on epidemiological invasions, P. Roy. Soc. Lond. B Bio., 266 (1999), 859–867. |
[9] | H. Matsuda, N. Ogita, A. Sasaki, et al., Statistical mechanics of population: The lattice Lotoka-Volterra model, Prog. Theor. Phys., 88 (1992), 1035–1049. |
[10] | C. T. Bauch, The spread of infectious diseases in spatially structured populations: An invasory pair approximation, Math. Biosci., 198 (2005), 217–237. |
[11] | N. Ringa and C. T. Bauch, Dynamics and control of foot-and-mouth disease in endemic countries: A pair approximation model, J. Theor. Biol., 357 (2014), 150–159. |
[12] | H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer, New York, 2017. |
[13] | I. Z. Kiss, J. C. Miller and P. L. Simon, Mathematics of Epidemics on Networks, Cham: Springer (2017) 598. |
[14] | P. Trapman, Reproduction numbers for epidemics on networks using pair approximation, Math. Biosci., 210 (2007), 464–489. |