Research article

On the role of compressibility in poroviscoelastic models

  • Received: 15 March 2019 Accepted: 19 June 2019 Published: 03 July 2019
  • In this article we conduct an analytical study of a poroviscoelastic mixture model stemming from the classical Biot's consolidation model for poroelastic media, comprising a fluid component and a solid component, coupled with a viscoelastic stress-strain relationship for the total stress tensor. The poroviscoelastic mixture is studied in the one-dimensional case, corresponding to the experimental conditions of confined compression. Upon assuming (i) negligible inertial effects in the balance of linear momentum for the mixture, (ii) a Kelvin-Voigt model for the effective stress tensor and (iii) a constant hydraulic permeability, we obtain an initial value/boundary value problem of pseudo-parabolic type for the spatial displacement of the solid component of the mixture. The dimensionless form of the differential equation is characterized by the presence of two positive parameters γ and η, representing the contributions of compressibility and structural viscoelasticity, respectively. Explicit solutions are obtained for different functional forms characterizing the boundary traction. The main result of our analysis is that the compressibility of the components of a poroviscoelastic mixture does not give rise to unbounded responses to non-smooth traction data. Interestingly, compressibility allows the system to store potential energy as its components are elastically compressed, thereby providing an additional mechanism that limits the maximum of the discharge velocity when the imposed boundary traction is irregular in time.

    Citation: Lorena Bociu, Giovanna Guidoboni, Riccardo Sacco, Maurizio Verri. On the role of compressibility in poroviscoelastic models[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 6167-6208. doi: 10.3934/mbe.2019308

    Related Papers:

    [1] Lernik Asserian, Susan E. Luczak, I. G. Rosen . Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol. Mathematical Biosciences and Engineering, 2023, 20(11): 20345-20377. doi: 10.3934/mbe.2023900
    [2] Kimberlyn Roosa, Ruiyan Luo, Gerardo Chowell . Comparative assessment of parameter estimation methods in the presence of overdispersion: a simulation study. Mathematical Biosciences and Engineering, 2019, 16(5): 4299-4313. doi: 10.3934/mbe.2019214
    [3] Celia Schacht, Annabel Meade, H.T. Banks, Heiko Enderling, Daniel Abate-Daga . Estimation of probability distributions of parameters using aggregate population data: analysis of a CAR T-cell cancer model. Mathematical Biosciences and Engineering, 2019, 16(6): 7299-7326. doi: 10.3934/mbe.2019365
    [4] Walid Emam, Khalaf S. Sultan . Bayesian and maximum likelihood estimations of the Dagum parameters under combined-unified hybrid censoring. Mathematical Biosciences and Engineering, 2021, 18(3): 2930-2951. doi: 10.3934/mbe.2021148
    [5] Kamil Rajdl, Petr Lansky . Fano factor estimation. Mathematical Biosciences and Engineering, 2014, 11(1): 105-123. doi: 10.3934/mbe.2014.11.105
    [6] H. T. Banks, R. A. Everett, Neha Murad, R. D. White, J. E. Banks, Bodil N. Cass, Jay A. Rosenheim . Optimal design for dynamical modeling of pest populations. Mathematical Biosciences and Engineering, 2018, 15(4): 993-1010. doi: 10.3934/mbe.2018044
    [7] Walid Emam, Ghadah Alomani . Predictive modeling of reliability engineering data using a new version of the flexible Weibull model. Mathematical Biosciences and Engineering, 2023, 20(6): 9948-9964. doi: 10.3934/mbe.2023436
    [8] P. van den Driessche, Lin Wang, Xingfu Zou . Modeling diseases with latency and relapse. Mathematical Biosciences and Engineering, 2007, 4(2): 205-219. doi: 10.3934/mbe.2007.4.205
    [9] H. Thomas Banks, Shuhua Hu, Zackary R. Kenz, Carola Kruse, Simon Shaw, John Whiteman, Mark P. Brewin, Stephen E. Greenwald, Malcolm J. Birch . Model validation for a noninvasive arterial stenosis detection problem. Mathematical Biosciences and Engineering, 2014, 11(3): 427-448. doi: 10.3934/mbe.2014.11.427
    [10] Azmy S. Ackleh, H.T. Banks, Keng Deng, Shuhua Hu . Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations. Mathematical Biosciences and Engineering, 2005, 2(2): 289-315. doi: 10.3934/mbe.2005.2.289
  • In this article we conduct an analytical study of a poroviscoelastic mixture model stemming from the classical Biot's consolidation model for poroelastic media, comprising a fluid component and a solid component, coupled with a viscoelastic stress-strain relationship for the total stress tensor. The poroviscoelastic mixture is studied in the one-dimensional case, corresponding to the experimental conditions of confined compression. Upon assuming (i) negligible inertial effects in the balance of linear momentum for the mixture, (ii) a Kelvin-Voigt model for the effective stress tensor and (iii) a constant hydraulic permeability, we obtain an initial value/boundary value problem of pseudo-parabolic type for the spatial displacement of the solid component of the mixture. The dimensionless form of the differential equation is characterized by the presence of two positive parameters γ and η, representing the contributions of compressibility and structural viscoelasticity, respectively. Explicit solutions are obtained for different functional forms characterizing the boundary traction. The main result of our analysis is that the compressibility of the components of a poroviscoelastic mixture does not give rise to unbounded responses to non-smooth traction data. Interestingly, compressibility allows the system to store potential energy as its components are elastically compressed, thereby providing an additional mechanism that limits the maximum of the discharge velocity when the imposed boundary traction is irregular in time.




    [1] L. Bociu, G. Guidoboni, R. Sacco, et al., Analysis of nonlinear poro-elastic and poro-viscoelastic models. Arch. Rational Mech. Anal., 222 (2016), 1445–1519.
    [2] C.-Y. Huang, V. C. Mow and G. A. Ateshian, The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J. Biomech. Eng., 123 (2001), 410–417.
    [3] C.-Y. Huang, M. A. Soltz, M. Kopacz, et al., Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage. J. Biomech. Eng., 125 (2003), 84–93.
    [4] M. Verri, G. Guidoboni, L. Bociu, et al., The role of structural viscoelasticity in deformable porous media with incompressible constituents: Applications in biomechanics. Math. Biosci. Eng., 15 (2018), 933.
    [5] D. Prada, A. Harris, G. Guidoboni, et al., Autoregulation and neurovascular coupling in the optic nerve head. Surv. Ophthalmol., 61 (2016), 164–186.
    [6] P. Causin, G. Guidoboni, A. Harris, et al., A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head. Math. Biosci., 257 (2014), 33–41.
    [7] J. C. Gross, A. Harris, B. A. Siesky, et al., Mathematical modeling for novel treatment approaches to open-angle glaucoma. Expert Rev. Ophthalmol., 12 (2017), 443–455.
    [8] A. Harris, G. Guidoboni, J. C. Arciero, et al., Ocular hemodynamics and glaucoma: the role of mathematical modeling. Eur. J. Ophthalmol., 23 (2013), 139–146.
    [9] J. H. Kim and J. Caprioli,. Intraocular pressure fluctuation: Is it important? J. Ophthalmic Vis. Res., 13 (2018), 170.
    [10] G. Guidoboni, F. Salerni, A. Harris, et al., Ocular and cerebral hemo-fluid dynamics in microgravity: a mathematical model. Invest. Ophth. Vis. Sci., 58 (2017), 3036–3036.
    [11] A. G. Lee, T. H. Mader, C. R. Gibson, et al., Space flight-associated neuro-ocular syndrome (sans). Eye, 32 (2018), 1164–1167.
    [12] M. Schanz and A.-D. Cheng. Dynamic analysis of a one-dimensional poroviscoelastic column. J. Appl. Mech., 68 (2001), 192–198.
    [13] R. E. Showalter. Diffusion in poro-elastic media. J. Math. Anal. Appl., 251 (2000), 310–340.
    [14] M. Biot. General theory of three-dimensional consolidation. J. Appl. Phys., 12 (1941), 155–164.
    [15] E. Detournay and A.-D. Cheng. Fundamentals of poroelasticity. In J. A. Hudson, editor, Comprehensive Rock Eng., 2 (1993), 113–171. Pergamon.
    [16] M. A. Soltz and G. A. Ateshian. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J. Biomech., 31 (1998), 927–934.
    [17] F. Treves. Basic Linear Partial Differential Equations. Academic Press, 1975.
  • This article has been cited by:

    1. H. T. Banks, J. E. Banks, S. L. Joyner, Estimation in time-delay modeling of insecticide-induced mortality, 2009, 17, 0928-0219, 10.1515/JIIP.2009.012
    2. H. T. Banks, Jimena L. Davis, Shuhua Hu, 2010, Chapter 2, 978-3-642-11277-5, 19, 10.1007/978-3-642-11278-2_2
    3. H T Banks, Jimena L Davis, Stacey L Ernstberger, Shuhua Hu, Elena Artimovich, Arun K Dhar, Experimental design and estimation of growth rate distributions in size-structured shrimp populations, 2009, 25, 0266-5611, 095003, 10.1088/0266-5611/25/9/095003
    4. H. T. Banks, John E. Banks, Natalie G. Cody, Mark S. Hoddle, Annabel E. Meade, Population model for the decline of Homalodisca vitripennis (Hemiptera: Cicadellidae) over a ten-year period, 2019, 13, 1751-3758, 422, 10.1080/17513758.2019.1616839
    5. Nonlinear stochastic Markov processes and modeling uncertainty in populations, 2012, 9, 1551-0018, 1, 10.3934/mbe.2012.9.1
    6. 2012, 978-1-4398-8083-8, 241, 10.1201/b12209-19
    7. E. M. Rutter, H. T. Banks, K. B. Flores, Estimating intratumoral heterogeneity from spatiotemporal data, 2018, 77, 0303-6812, 1999, 10.1007/s00285-018-1238-6
    8. K. Wendelsdorf, G. Dean, Shuhua Hu, S. Nordone, H.T. Banks, Host immune responses that promote initial HIV spread, 2011, 289, 00225193, 17, 10.1016/j.jtbi.2011.08.012
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5022) PDF downloads(609) Cited by(15)

Article outline

Figures and Tables

Figures(22)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog