
Mathematical Biosciences and Engineering, 2019, 16(5): 57295749. doi: 10.3934/mbe.2019286.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks
1 School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, Hunan, 410114, P. R. China
2 College of Arts and Science, National University of Defense Technology, Changsha, Hunan, 410073, P.R. China
3 Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, P. R. China
Received: , Accepted: , Published:
Special Issues: Differential Equations in Mathematical Biology
Keywords: SIRS model; heterogeneous network; basic reproduction number; global dynamics; immunization strategy
Citation: Haijun Hu, Xupu Yuan, Lihong Huang, Chuangxia Huang. Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Mathematical Biosciences and Engineering, 2019, 16(5): 57295749. doi: 10.3934/mbe.2019286
References:
 1. WHO Ebola Response Team, Ebola virus disease in west Africathe first 9 months of the epidemic and forward projections, N. Engl. J. Med., 371 (2014), 1481–1495.
 2. S. Watts, SARS: a case study in emerging infections, Soc. Hist. Med., 18 (2005), 498–500.
 3. R. Xu and Z. Ma, Stability of a delayed SIRS epidemic model with a nonlinear incidence rate, Chaos Solitons Fractals, 41 (2009), 2319–2325.
 4. J. M. Epstein, Modelling to contain pandemics, Nature, 460 (2009), 687–689.
 5. J. Chen, An SIRS epidemic model, Appl. Math. J. Chinese Univ., 19 (2004), 101–108.
 6. T. Li, F. Zhang, H. Liu, et al., Threshold dynamics of an SIRS model with nonlinear incidence rate and transfer from infectious to susceptible, Appl. Math. Lett., 70 (2017), 52–57.
 7. C. Huang, H. Zhang, J. Cao, et al., Stability and Hopf bifurcation of a delayed preypredator model with disease in the predator, Int. J. Bifurcat. Chaos, (2019), in press.
 8. M. Martcheva, Introduction to Mathematical Epidemiology, Springer, New York, 2015.
 9. W. O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 115 (1927), 700–721.
 10. W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. II. The problem of endemicity, Proc. R. Soc. Lond. A, 138 (1932), 55–83.
 11. W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. III. Further studies of the problem of endemicity, Proc. R. Soc. Lond. A, 141 (1933), 94–122.
 12. H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci., 28 (1976), 335–356.
 13. S. Riley, C. Fraser and C. A. Donnelly, Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions, Science, 300 (2003), 1961–1966.
 14. M. Small and C. K. Tse, Small world and scale free model of transmission of SARS, Int. J. Bifurcat. Chaos, 15 (2005), 1745–1755.
 15. G. Zhu, G. Chen and X. Fu, Effects of active links on epidemic transmission over social networks, Phys. A, 468 (2017), 614–621.
 16. M. E. J. Newman, The structure and function of complex networks, SIAM Rev., 45 (2003), 167–256.
 17. X. Chu, Z. Zhang, J. Guan, et al., Epidemic spreading with nonlinear infectivity in weighted scalefree networks, Phys. A, 390 (2011), 471–481.
 18. H. Han, A. Ma and Z. Huang, An improved SIRS epidemic model on complex network, Int. Conf. Comput. Intell. Softw. Eng. IEEE, (2009), 1–5.
 19. R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission, Phy. Rev. E, 70 (2004), 030902.
 20. R. PastorSatorras and A. Vespignani, Epidemic spreading in scalefree networks, Phys. Rev. Lett., 86 (2001), 3200–3213.
 21. L. Wang and G. Dai, Global stability of virus spreading in complex heterogeneous networks, SIAM J. Appl. Math., 68 (2008), 1495–1502.
 22. R. Yang, B. Wang, J. Ren, et al., Epidemic spreading on heterogeneous networks with identical infectivity, Phys. Lett. A, 364 (2007), 189–193.
 23. H. Zhang and X. Fu, Spreading of epidemics on scalefree networks with nonlinear infectivity, Nonlinear Anal., 70 (2009), 3273–327.
 24. X. Zhang, J. Wu, P. Zhao, et al., Epidemic spreading on a complex network with partial immunization, Soft Comput. 22 (2017), 1–9.
 25. C. H. Li, C. C. Tsai and S. Y. Yang, Analysis of epidemic spreading of an SIRS model in complex heterogeneous networks, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1042–1054.
 26. C. Huang, J. Cao, F. Wen, et al., Stability analysis of SIR model with distributed delay on complex networks, PloS One, 11 (2016), e0158813.
 27. J. Huo and H. Y. Zhao, Dynamical analysis of a fractional SIR model with birth and death on heterogeneous complex networks, Phys. A, 448 (2016), 41–56.
 28. Z. Jin, G. Sun and H. Zhu, Epidemic models for complex networks with demographics, Math. Biosci. Eng., 11 (2014), 1295–1317.
 29. J. Liu, Y. Tang and Z. R. Yang, The spread of disease with birth and death on networks, J. Stat. Mech. Theory Exp., 8 (2004), P08008.
 30. Y. Wang, J. Cao, A. Alsaedi, et al., The spreading dynamics of sexually transmitted diseases with birth and death on heterogeneous networks, J. Stat. Mech. Theor. Exp., 2 (2017), 023502.
 31. P. Van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
 32. H. Yang, The basic reproduction number obtained from Jacobian and next generation matricesA case study of dengue transmission modelling, Biosystems, 126 (2014), 52–75.
 33. F. Chen, On a nonlinear nonautonomous predatorprey model with diffusion and distributed delay, J. Comput. Appl. Math., 180 (2005), 33–49.
 34. H. R. Thieme, Persistence under relaxed pointdissipativity (with application to an endemic model), SIAM J. Math. Anal., 24 (1993), 407–435.
 35. H. L. Smith and P. De Leenheer, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 1313–1327.
 36. J. P. LaSalle, The stability of dynamical systems, SIAM, Philadelphia, 1976.
 37. R. Cohen, S. Havlin and D. BenAvraham, Effecient immunization strategies for computer networks and populations, Phys. Rev. Lett., 91 (2003), 247901.
 38. X. Fu, M. Small, D. M. Walker, et al., Epidemic dynamics on scalefree networks with piecewise linear infectivity and immunization, Phys. Rev. E, 77 (2008), 036113.
 39. F. Nian and X. Wang, Efficient immunization strategies on complex networks, J. Theor. Biol., 264 (2010), 77–83.
 40. R. Pastorsatorras and A.Vespignani, Immunization of complex networks, Phys. Rev. E, 65 (2002), 036104.
 41. D. S. Callaway, M. E. J. Newman, S. H. Strogatz, et al., Network robustness and fragility: percolation on random graphs, Phys. Rev. Lett., 85 (2000), 5468–5471.
 42. A. L. Barabasi and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509–512.
This article has been cited by:
 1. Yi Wang, Jinde Cao, Gang Huang, Further dynamic analysis for a network sexually transmitted disease model with birth and death, Applied Mathematics and Computation, 2019, 363, 124635, 10.1016/j.amc.2019.124635
 2. Xin Yang, Shigang Wen, Zhifeng Liu, Cai Li, Chuangxia Huang, Dynamic Properties of Foreign Exchange Complex Network, Mathematics, 2019, 7, 9, 832, 10.3390/math7090832
 3. Sudesh Kumari, Renu Chugh, Jinde Cao, Chuangxia Huang, Multi Fractals of Generalized Multivalued Iterated Function Systems in bMetric Spaces with Applications, Mathematics, 2019, 7, 10, 967, 10.3390/math7100967
 4. Chuangxia Huang, Xiaoguang Yang, Jinde Cao, Stability analysis of Nicholson’s blowflies equation with two different delays, Mathematics and Computers in Simulation, 2019, 10.1016/j.matcom.2019.09.023
 5. Manickam Iswarya, Ramachandran Raja, Grienggrai Rajchakit, Jinde Cao, Jehad Alzabut, Chuangxia Huang, Existence, Uniqueness and Exponential Stability of Periodic Solution for DiscreteTime Delayed BAM Neural Networks Based on Coincidence Degree Theory and Graph Theoretic Method, Mathematics, 2019, 7, 11, 1055, 10.3390/math7111055
 6. Xin Yang, Shigang Wen, Xian Zhao, Chuangxia Huang, Systemic importance of financial institutions: A complex network perspective, Physica A: Statistical Mechanics and its Applications, 2019, 10.1016/j.physa.2019.123448
 7. M. Iswarya, R. Raja, G. Rajchakit, J. Cao, J. Alzabut, C. Huang, A perspective on graph theorybased stability analysis of impulsive stochastic recurrent neural networks with timevarying delays, Advances in Difference Equations, 2019, 2019, 1, 10.1186/s1366201924433
 8. Qian Cao, Guoqiu Wang, Hong Zhang, Shuhua Gong, New results on global asymptotic stability for a nonlinear densitydependent mortality Nicholson’s blowflies model with multiple pairs of timevarying delays, Journal of Inequalities and Applications, 2020, 2020, 1, 10.1186/s1366001922772
 9. Chaofan Qian, Yuhui Hu, Novel stability criteria on nonlinear densitydependent mortality Nicholson’s blowflies systems in asymptotically almost periodic environments, Journal of Inequalities and Applications, 2020, 2020, 1, 10.1186/s1366001922754
 10. Qian Cao, Guoqiu Wang, Chaofan Qian, New results on global exponential stability for a periodic Nicholson’s blowflies model involving timevarying delays, Advances in Difference Equations, 2020, 2020, 1, 10.1186/s1366202024954
 11. Wentao Wang, Wei Chen, Persistence and extinction of Markov switched stochastic Nicholson's blowflies delayed differential equation, International Journal of Biomathematics, 2020, 10.1142/S1793524520500151
 12. Luogen Yao, Global exponential stability on antiperiodic solutions in proportional delayed HIHNNs, Journal of Experimental & Theoretical Artificial Intelligence, 2020, 1, 10.1080/0952813X.2020.1721571
 13. Qian Cao, Guoqiu Wang, Dynamic analysis on a delayed nonlinear densitydependent mortality Nicholson's blowflies model, International Journal of Control, 2020, 1, 10.1080/00207179.2020.1725134
 14. Ruihan Chen, Song Zhu, Yongqiang Qi, Yuxin Hou, Reachable set bounding for neural networks with mixed delays: Reciprocally convex approach, Neural Networks, 2020, 10.1016/j.neunet.2020.02.005
 15. A. Pratap, R. Raja, Jinde Cao, J. Alzabut, Chuangxia Huang, Finitetime synchronization criterion of graph theory perspective fractionalorder coupled discontinuous neural networks, Advances in Difference Equations, 2020, 2020, 1, 10.1186/s1366202002551x
 16. Qian Wang, Hui Wei, Zhiwen Long, A nonreduced order approach to stability analysis of delayed inertial genetic regulatory networks, Journal of Experimental & Theoretical Artificial Intelligence, 2020, 1, 10.1080/0952813X.2020.1735531
 17. Jian Zhang, Chuangxia Huang, Dynamics analysis on a class of delayed neural networks involving inertial terms, Advances in Difference Equations, 2020, 2020, 1, 10.1186/s13662020025664
 18. Chuangxia Huang, Xin Long, Jinde Cao, Stability of antiperiodic recurrent neural networks with multiproportional delays, Mathematical Methods in the Applied Sciences, 2020, 10.1002/mma.6350
 19. Yanli Xu, Qian Cao, Xiaojin Guo, Stability on a patch structure Nicholson’s blowflies system involving distinctive delays, Applied Mathematics Letters, 2020, 105, 106340, 10.1016/j.aml.2020.106340
 20. Yanli Xu, Qian Cao, Global asymptotic stability for a nonlinear densitydependent mortality Nicholson’s blowflies system involving multiple pairs of timevarying delays, Advances in Difference Equations, 2020, 2020, 1, 10.1186/s13662020025691
 21. Sudesh Kumari, Renu Chugh, Jinde Cao, Chuangxia Huang, On the construction, properties and Hausdorff dimension of random Cantor one p^{th} set, AIMS Mathematics, 2020, 5, 4, 3138, 10.3934/math.2020202
 22. Chuangxia Huang, Luanshan Yang, Jinde Cao, Asymptotic behavior for a class of population dynamics, AIMS Mathematics, 2020, 5, 4, 3378, 10.3934/math.2020218
 23. Shigang Wen, Yu Tan, Mengge Li, Yunke Deng, Chuangxia Huang, Analysis of Global Remittance Based on Complex Networks, Frontiers in Physics, 2020, 8, 10.3389/fphy.2020.00085
 24. Hong Zhang, Qian Cao, Hedi Yang, Asymptotically almost periodic dynamics on delayed Nicholsontype system involving patch structure, Journal of Inequalities and Applications, 2020, 2020, 1, 10.1186/s13660020023660
 25. Anbalagan Pratap, Ramachandran Raja, Jehad Alzabut, Jinde Cao, Grienggrai Rajchakit, Chuangxia Huang, Mittag‐Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field, Mathematical Methods in the Applied Sciences, 2020, 10.1002/mma.6367
 26. Chaofan Qian, New periodic stability for a class of Nicholson's blowflies models with multiple different delays, International Journal of Control, 2020, 1, 10.1080/00207179.2020.1766118
 27. Zaiyun Zhang, Limei Li, Chunhua Fang, Fan He, Chuangxia Huang, Wen Zhu, A new blowup criterion for the N – abc family of CamassaHolm type equation with both dissipation and dispersion, Open Mathematics, 2020, 18, 1, 194, 10.1515/math20200012
 28. Hong Zhang, Chaofan Qian, Convergence analysis on inertial proportional delayed neural networks, Advances in Difference Equations, 2020, 2020, 1, 10.1186/s13662020027373
 29. Qian Cao, Xiaojin Guo, Antiperiodic dynamics on highorder inertial Hopfield neural networks involving timevarying delays, AIMS Mathematics, 2020, 5, 6, 5402, 10.3934/math.2020347
 30. Yadan Zhang, Minghui Jiang, Xue Fang, A New FixedTime Stability Criterion and Its Application to Synchronization Control of MemristorBased Fuzzy Inertial Neural Networks with Proportional Delay, Neural Processing Letters, 2020, 10.1007/s11063020103059
 31. Qian Cao, Xin Long, New convergence on inertial neural networks with timevarying delays and continuously distributed delays, AIMS Mathematics, 2020, 5, 6, 5955, 10.3934/math.2020381
 32. Luogen Yao, Qian Cao, Antiperiodicity on highorder inertial Hopfield neural networks involving mixed delays, Journal of Inequalities and Applications, 2020, 2020, 1, 10.1186/s13660020024443
 33. Anbalagan Pratap, Ramachandran Raja, Jinde Cao, Chuangxia Huang, Michal Niezabitowski, Ovidiu Bagdasar, Stability of discretetime fractionalorder timedelayed neural networks in complex field, Mathematical Methods in the Applied Sciences, 2020, 10.1002/mma.6745
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *