[1]
|
E. Assunção, L. Quintino and R. Miranda, Comparative study of laser welding in tailor blanks for the automotive industry, Int. J. Adv. Manuf. Tech., 49 (2010), 123–131.
|
[2]
|
X. Cao, M. Jahazi, J. Immarigeon, et al., A review of laser welding techniques for magnesium alloys,J. Mater. Process. Tech., 171 (2006), 188–204.
|
[3]
|
R. T. Yang and Z. W. Chen, A study on fiber laser lap welding of thin stainless steel, Int. J. Precis. Eng. Man., 14 (2013), 207–214.
|
[4]
|
J. Stavridis, A. Papacharalampopoulos and P. Stavropoulos, Quality assessment in laser welding: a critical review, Int. J. Adv. Manuf. Tech., 94 (2017), 1825–1847.
|
[5]
|
M. Jager and F. A. Hamprecht, Principal component imagery for the quality monitoring of dynamic laser welding processes, IEEE T. Ind. Electron., 56 (2008), 1307–1313.
|
[6]
|
L. E. Afanas'eva, I. A. Barabonova, P. O. Zorenko, et al., Laser welding in external electrical and magnetic fields, Weld. Int., 27 (2013), 545–547.
|
[7]
|
A. Schneider, V. Avilov, A. Gumenyuk, et al., Laser beam welding of aluminum alloys under the influence of an electromagnetic field, Phys. Procedia, 41 (2013), 4–11.
|
[8]
|
J. Volpp, Keyhole stability during laser welding-Part II: process pores and spatters, Prod. Eng. Res. Devel., 11 (2016), 9–18.
|
[9]
|
J. Stavridis, A. Papacharalampopoulos and P. Stavropoulos, A cognitive approach for quality assessment in laser welding, Procedia CIRP, 72 (2018), 1542–1547.
|
[10]
|
C. H. Kim and D. C. Ahn, Coaxial monitoring of keyhole during Yb:YAG laser welding, Opt. Laser Technol., 44 (2012), 1874–1880.
|
[11]
|
A. Matsunawa, J. D. Kim, N. Seto, et al., Dynamics of keyhole and molten pool in laser welding, J. Laser Appl., 10 (1998), 247–254.
|
[12]
|
G. Chen, M. Zhang, Z. Zhao, et al., Measurements of laser-induced plasma temperature field in deep penetration laser welding, Opt. Laser Technol., 45 (2013), 551–557.
|
[13]
|
J. Wang, C. Wang, X. Meng, et al., Study on the periodic oscillation of plasma/vapour induced during high power fibre laser penetration welding, Opt. Laser Technol., 44 (2012), 67–70.
|
[14]
|
C. Fan, F. Lv and S. Chen, Visual sensing and penetration control in aluminum alloy pulsed GTA welding, Int. J. Adv. Manuf. Tech., 42 (2009), 126–137.
|
[15]
|
R. Fabbro, S. Slimani, F. Coste, et al., Study of keyhole behaviour for full penetration Nd–Yag CW laser welding, J. Phys. D. Appl. Phys., 38 (2005), 1881.
|
[16]
|
K. Stefan, Process monitoring and control of laser beam welding: Measuring quantifiable data for improved processing results, Laser Technik J., 5 (2008), 41–43.
|
[17]
|
K. Stefan, Understanding the Laser Process new approaches for Process monitoring in laser materials Processing, Laser Technik J., 7, (2010), 49–52.
|
[18]
|
Z. Al-Sarraf and M. Lucas, A study of weld quality in ultrasonic spot welding of similar and dissimilar metals, J. Phys. Conference Series, 382 (2012), 012013.
|
[19]
|
L. Yang and I. C. Ume, Inspection of simulated weld penetration depth using laser-generated Lamb waves and wavelet signal processing, AIP Conference Proceedings. AIP, 1650 (2015), 1386–1391.
|
[20]
|
M. A. Maher, P. J. L. Webster, J. C. Chiao, et al., Coaxial real-time metrology and gas assisted laser micromachining: process development, stochastic behavior, and feedback control, Micromachining and Microfabrication Process Technology XV. International Society for Optics and Photonics, 7590 (2010), 759003.
|
[21]
|
P. J. L. Webster, G. L. Wright, Y. Ji, et al., Automatic laser welding and milling with in situ inline coherent imaging, Opt. Lett., 39 (2014), 6217–6220.
|
[22]
|
A. Khan, B. Baharudin, L. H. Lee, et al., A review of machine learning algorithms for text-documents classification, J. Adv. Inform. Tech., 1 (2010), 4–20.
|
[23]
|
P. Aivaliotis, A. Zampetis, G. Michalos, et al., A machine learning approach for visual recognition of complex parts in robotic manipulation, Procedia Manuf., 11 (2017), 423–430.
|
[24]
|
K. Kokkalis, G. Michalos, P. Aivaliotis, et al., An approach for implementing power and force limiting in sensorless industrial robots, Procedia CIRP, 76 (2018), 138–143.
|
[25]
|
X. Gao, C. Lan, D. You, et al., Weldment Nondestructive Testing Using Magneto-optical Imaging Induced by Alternating Magnetic Field,J. Nondestruct. Eval., 36 (2017), 55.
|
[26]
|
T. K. Xia, P. M. Hui and D. Stroud, Theory of faraday rotation in granular magnetic materials, J. Appl. Phys., 67 (1990), 2736–2741.
|
[27]
|
X. Wan, Y. Wang, D. Zhao, et al., Weld quality monitoring research in small scale resistance spot welding by dynamic resistance and neural network, Measurement, 99 (2017), 120–127.
|
[28]
|
M. Luo and Y. C. Shin, Estimation of keyhole geometry and prediction of welding defects during laser welding based on a vision system and a radial basis function neural network, Int. J. Adv. Manuf. Tech., 81 (2015), 263–276.
|
[29]
|
T. Wang, J. Chen, X. Gao, et al., Quality Monitoring for Laser Welding Based on High-Speed Photography and Support Vector Machine, Appl. Sci., 7 (2017), 299.
|
[30]
|
T. Wang, J. Chen, X. Gao, et al., Real-time monitoring for disk laser welding based on feature selection and SVM, Appl. Sci., 7, (2017), 884.
|
[31]
|
Z. Zhang, E. Kannatey-Asibu, S. Chen, et al., Online defect detection of Al alloy in arc welding based on feature extraction of arc spectroscopy signal, Int. J. Adv. Manuf. Tech., 79 (2015), 2067–2077.
|
[32]
|
J. Michalska and M. Sozańska, Qualitative and quantitative analysis of σ and χ phases in 2205 duplex stainless steel, Mater. Charact., 56 (2006), 355–362.
|
[33]
|
S. M. Holland, Principal components analysis (PCA), Department of Geology, University of Georgia, Athens,GA (2008), 30602–2501.
|
[34]
|
M. Buscema, Back propagation neural networks, Int. J. Addictions, 33 (1998), 233–270.
|
[35]
|
S. Chen, C. F. Cowan and P. M. Grant, Orthogonal least squares learning algorithm for radial basis function networks, IEEE T. Neural Networ., 2 (1991), 302–309.
|
[36]
|
H. Drucker, C. J. Burges, L. Kaufman, et al., Support vector regression machines, Adv. Neural Inform. Process. Sys., (1997), 155–161.
|
[37]
|
S. Altarazi, L. Hijazi and E. Kaiser, Process parameters optimization for multiple-inputs- multiple-outputs pulsed green laser welding via response surface methodology, 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, (2016), 1041–1045.
|
[38]
|
C. J. Willmott, Some comments on the evaluation of model performance, B. Am. Meteorol. Soc., 63 (1982), 1309–1313.
|
[39]
|
J. Qian, J. Yi, Y. Cheng, et al., A sequential constraints updating approach for Kriging surrogate model-assisted engineering optimization design problem, Eng. Comput-Germany., (2019), 1–17.
|
[40]
|
Z. H. Han, C. Z. Xu, Z. Liang, et al., Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids, Chinese J. Aeronaut., (2019).
|