Research article

Analysis on recurrence behavior in oscillating networks of biologically relevant organic reactions

  • Received: 10 April 2019 Accepted: 14 April 2019 Published: 10 June 2019
  • In this paper, we present a new method based on dynamical system theory to study certain type of slow-fast motions in dynamical systems, for which geometric singular perturbation theory may not be applicable. The method is then applied to consider recurrence behavior in an oscillating network model which is biologically related to organic reactions. We analyze the stability and bifurcation of the equilibrium of the system, and find the conditions for the existence of recurrence, i.e., there exists a "window" in bifurcation diagram between a saddle-node bifurcation point and a Hopf bifurcation point, where the equilibrium is unstable. Simulations are given to show a very good agreement with analytical predictions.

    Citation: Pei Yu, Xiangyu Wang. Analysis on recurrence behavior in oscillating networks of biologically relevant organic reactions[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 5263-5286. doi: 10.3934/mbe.2019263

    Related Papers:

    [1] Zi Sang, Zhipeng Qiu, Xiefei Yan, Yun Zou . Assessing the effect of non-pharmaceutical interventions on containing an emerging disease. Mathematical Biosciences and Engineering, 2012, 9(1): 147-164. doi: 10.3934/mbe.2012.9.147
    [2] Hao Wang, Di Zhu, Shiqi Li, Robert A. Cheke, Sanyi Tang, Weike Zhou . Home quarantine or centralized quarantine? A mathematical modelling study on the COVID-19 epidemic in Guangzhou in 2021. Mathematical Biosciences and Engineering, 2022, 19(9): 9060-9078. doi: 10.3934/mbe.2022421
    [3] Maryam Al-Yahyai, Fatma Al-Musalhi, Ibrahim Elmojtaba, Nasser Al-Salti . Mathematical analysis of a COVID-19 model with different types of quarantine and isolation. Mathematical Biosciences and Engineering, 2023, 20(1): 1344-1375. doi: 10.3934/mbe.2023061
    [4] Julijana Gjorgjieva, Kelly Smith, Gerardo Chowell, Fabio Sánchez, Jessica Snyder, Carlos Castillo-Chavez . The Role of Vaccination in the Control of SARS. Mathematical Biosciences and Engineering, 2005, 2(4): 753-769. doi: 10.3934/mbe.2005.2.753
    [5] Fang Wang, Lianying Cao, Xiaoji Song . Mathematical modeling of mutated COVID-19 transmission with quarantine, isolation and vaccination. Mathematical Biosciences and Engineering, 2022, 19(8): 8035-8056. doi: 10.3934/mbe.2022376
    [6] Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky . Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences and Engineering, 2006, 3(3): 527-544. doi: 10.3934/mbe.2006.3.527
    [7] Fernando Saldaña, Hugo Flores-Arguedas, José Ariel Camacho-Gutiérrez, Ignacio Barradas . Modeling the transmission dynamics and the impact of the control interventions for the COVID-19 epidemic outbreak. Mathematical Biosciences and Engineering, 2020, 17(4): 4165-4183. doi: 10.3934/mbe.2020231
    [8] Abba B. Gumel, C. Connell McCluskey, James Watmough . An sveir model for assessing potential impact of an imperfect anti-SARS vaccine. Mathematical Biosciences and Engineering, 2006, 3(3): 485-512. doi: 10.3934/mbe.2006.3.485
    [9] Kai Wang, Zhenzhen Lu, Xiaomeng Wang, Hui Li, Huling Li, Dandan Lin, Yongli Cai, Xing Feng, Yateng Song, Zhiwei Feng, Weidong Ji, Xiaoyan Wang, Yi Yin, Lei Wang, Zhihang Peng . Current trends and future prediction of novel coronavirus disease (COVID-19) epidemic in China: a dynamical modeling analysis. Mathematical Biosciences and Engineering, 2020, 17(4): 3052-3061. doi: 10.3934/mbe.2020173
    [10] Xinmiao Rong, Liu Yang, Huidi Chu, Meng Fan . Effect of delay in diagnosis on transmission of COVID-19. Mathematical Biosciences and Engineering, 2020, 17(3): 2725-2740. doi: 10.3934/mbe.2020149
  • In this paper, we present a new method based on dynamical system theory to study certain type of slow-fast motions in dynamical systems, for which geometric singular perturbation theory may not be applicable. The method is then applied to consider recurrence behavior in an oscillating network model which is biologically related to organic reactions. We analyze the stability and bifurcation of the equilibrium of the system, and find the conditions for the existence of recurrence, i.e., there exists a "window" in bifurcation diagram between a saddle-node bifurcation point and a Hopf bifurcation point, where the equilibrium is unstable. Simulations are given to show a very good agreement with analytical predictions.




    [1] W. Zhang, L. M. Wahl and P. Yu, Modelling and analysis of recurrent autoimmune disease, SIAM J. Appl. Math., 74 (2014), 1998–2025.
    [2] H. J. Girschick, C. Zimmer, G. Klaus, et al., Chronic recuurent multifocal osteomyelitis: What is it and how should it be treated? Nat. Clin. Practice Rheumatol., 3 (2007), 733–738.
    [3] R. S. Iyer, M. M. Thapa and F. S. Chew, Chronic recurrent multifocal osteomyelitis: Review, Amer. J. Roentgenol., 196 (2011), S87–S91.
    [4] D. M. Fergusson, L. J. Horwood and F. T. Shannon, Early solid feeding and recurrent childhood eczema: A 10-year longitudinal study, Pediatrics, 86 (1990), 541–546.
    [5] D. D. Munro, Recurrent subacute discoid lupus erythematosus, Proc. Roy. Soc. Med., 56 (1963), 78–79.
    [6] T. Vollmer, The natural history of relapses in multiple sclerosis, J. Neurolog. Sci., 256 (2007), s5–s13.
    [7] N. Fenichel, Geometri singular perturbation theory, J. Diff. Eqns., 31 (1979) 879–910.
    [8] X. F. Chen, P. Yu, M. Han, et al., Canard solutions of 2-D singularly perturbed systems, Chaos Soliton. Fract., 23 (2005), 915–927.
    [9] W. Zhang, L. M. Wahl and P. Yu, Conditions for transient viremia in deterministic in-host models: viral blips need no exogenous trigger, SIAM J. Appl. Math., 73 (2013), 853–881.
    [10] W. Zhang, L. M. Wahl and P. Yu, Viral blips may not need a trigger: how transient viremia can arise in deterministic in-host models, SIAM Review, 56 (2014), 127–155.
    [11] P. Yu, W. Zhang and L.M. Wahl, Dynamical analysis and simulation of a 2-dimensional disease model with convex incidence, Commun. Nonlinear Sci. Numer. Simulat., 37 (2016), 163–192.
    [12] N. S. Semenov, J. K. Lewis, A. Alar, et al., Autocatalytic, bistable, oscillatory networks of biolog-ically relevant organic reactions, Nature, 573 (2016), 656–660.
    [13] P. Nghe, W. Hordijk, S. A. Kauffman, et al., Prebiotic network evolution:six key parameters, Mol. Biosyst., 11 (2015), 3206–3217.
    [14] F. J. Dyson, A model for the origin of life, J. Mol. Evol., 18 (1982), 344–350.
    [15] B. H. Patel, C. Percivalle, D. J. Ritson, et al., Common origins ofRNA, protein and lipid precursors in a cyanosulfidic protometabolism, Nat. Chem., 7 (2015), 301–307.
    [16] J. J. Tyson, Modeling the cell -division cycle: cdc2 and cyclin interactions, Proc. Natl. Acad. Sci. USA, 88 (1991), 7328–7332.
    [17] J. J. Tyson, K. C. Chen, B. Novak, et al., Toggles and blinkers:dynamics of regulatory and signaling pathways in the cell, Curr. Opin. Cell Biol., 15 (2003), 221–231.
    [18] J. E. Ferrell, T. Y. C. Tasi and Q. O. Yang, Modeling the cell cycle:why do certain circuits oscillate, Cell, 244 (2011), 874–885.
    [19] A. Goldbeter, A model for circadian oscillations in the Drosophila period protein(PER), Proc. R. Soc. Lond., B261 (1995), 319–324.
    [20] R. FitzHugh, D. M. Fergusson, L. J. Horwood, et al., Impulses and physiological states in theoret-ical models of nerve membrane, Biophys, J1 (1961), 445–466.
    [21] M. T. Laub and W. F. A. Loomis, A molecular network that produces spontaneous oscillations in excitable cells of dictyostelium, Mol. Biol. Cell, 9 (1998), 3521–3532.
    [22] A. D. Lander, Pattern, growth, and control, Cell, 144 (2011), 955–969.
    [23] B. P. Belousov, Periodicheski deistvuyushchaya reaktsia i ee mechanism [in Russian]. In Sbornik Referatov po Radiatsionni Meditsine, (1958), 145–147.
    [24] L. Gyorgyi, T. Turányi and R. J. Field, Mechanistic details of the oscillatory Belousov-Zhabotinskii reaction, J. Phys. Chem., 94 (1990), 7162–7170.
    [25] I. R. Epstein and J. A. Pojman, An introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos, in Chps.2 and 4, Oxford Univ. Press, (1998), 17–47 and 62–83.
    [26] I. U. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd edition, Ch.3: 77-115, Springer, New York, 2004.
    [27] D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory Ⅰ: Modelling, State Space Anal-ysis, Stability and Robustnes, 2nd edition, Springer-Verlag, New York, 2005.
    [28] P. Yu, Closed-form conditions of bifurcation points for general differential equations, Int. J. Bifur-cat. Chaos, 15 (2005), 1467–1483.
    [29] M. Han and P. Yu, Normal Forms Melnikov Functions and Bifurcations of Limit Cycles, Springer, London, 2012.
    [30] P. Yu, Computation of normal forms via a perturbation technique, J. Sound Vib., 211 (1998), 19–38.
    [31] W. Zhang and P. Yu, Hopf and generalized Hopf bifurcations in a recurrent autoimmune disease model, Int. J. Bifurcat. Chaos, 26 (2016), 1650079–1650102.
    [32] C. Li, J. Li, Z. Ma, et al., Canard phenomenon for an SIS epidemic model with nonlinear incidence, J. Math. Anal. Appl., 420 (2014), 987–1004.
  • This article has been cited by:

    1. Luis Almonte-Vega, Monica Colón-Vargas, Ligia Luna-Jarrín, Joel Martinez, Jordy Rodriguez-Rinc, Anarina L. Murillo, Mugdha Thakur, Baltazar Espinoza, Rohan Patil, Leon Arriola, Viswanathan Arunachalam, Anuj Mubayi, Cost analysis of treatment strategies for the control of HSV–2 infection in the U.S.: A mathematical modeling-based case study, 2020, 324, 00255564, 108347, 10.1016/j.mbs.2020.108347
    2. Erivelton G. Nepomuceno, Ricardo H.C. Takahashi, Luis A. Aguirre, Reducing vaccination level to eradicate a disease by means of a mixed control with isolation, 2018, 40, 17468094, 83, 10.1016/j.bspc.2017.09.004
    3. Yuqin Zhao, Dobromir T. Dimitrov, Hao Liu, Yang Kuang, Mathematical Insights in Evaluating State Dependent Effectiveness of HIV Prevention Interventions, 2013, 75, 0092-8240, 649, 10.1007/s11538-013-9824-7
    4. B. Ainseba, M. Iannelli, Optimal Screening in Structured SIR Epidemics, 2012, 7, 0973-5348, 12, 10.1051/mmnp/20127302
    5. Cameron Browne, Hayriye Gulbudak, Glenn Webb, Modeling contact tracing in outbreaks with application to Ebola, 2015, 384, 00225193, 33, 10.1016/j.jtbi.2015.08.004
    6. Swati DebRoy, Olivia Prosper, Austin Mishoe, Anuj Mubayi, Challenges in modeling complexity of neglected tropical diseases: a review of dynamics of visceral leishmaniasis in resource limited settings, 2017, 14, 1742-7622, 10.1186/s12982-017-0065-3
    7. Ginny Sprang, Miriam Silman, Posttraumatic Stress Disorder in Parents and Youth After Health-Related Disasters, 2013, 7, 1935-7893, 105, 10.1017/dmp.2013.22
    8. Attila Dénes, Abba B. Gumel, Modeling the impact of quarantine during an outbreak of Ebola virus disease, 2019, 4, 24680427, 12, 10.1016/j.idm.2019.01.003
    9. Barbara Nussbaumer-Streit, Verena Mayr, Andreea Iulia Dobrescu, Andrea Chapman, Emma Persad, Irma Klerings, Gernot Wagner, Uwe Siebert, Claudia Christof, Casey Zachariah, Gerald Gartlehner, Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review, 2020, 14651858, 10.1002/14651858.CD013574
    10. Carmen Coll, Elena Sánchez, Quarantine in an epidemic model with seasonality, 2020, 114, 1578-7303, 10.1007/s13398-019-00753-x
    11. Maia Martcheva, 2015, Chapter 9, 978-1-4899-7611-6, 215, 10.1007/978-1-4899-7612-3_9
    12. Gerardo Chowell, Hiroshi Nishiura, Transmission dynamics and control of Ebola virus disease (EVD): a review, 2014, 12, 1741-7015, 10.1186/s12916-014-0196-0
    13. Jing-An Cui, Fangyuan Chen, Effects of isolation and slaughter strategies in different species on emerging zoonoses, 2017, 14, 1551-0018, 1119, 10.3934/mbe.2017058
    14. Govind Prasad Sahu, Joydip Dhar, Dynamics of an SEQIHRS epidemic model with media coverage, quarantine and isolation in a community with pre-existing immunity, 2015, 421, 0022247X, 1651, 10.1016/j.jmaa.2014.08.019
    15. Bhavani Shankara Bagepally, Madhumitha Haridoss, Meenakumari Natarajan, Kathiresan Jeyashree, Manickam Ponnaiah, Cost-effectiveness of surgical mask, N-95 respirator, hand-hygiene and surgical mask with hand hygiene in the prevention of COVID-19: Cost effectiveness analysis from Indian context, 2021, 10, 22133984, 100702, 10.1016/j.cegh.2021.100702
    16. Mohammad A. Safi, Mudassar Imran, Abba B. Gumel, Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation, 2012, 131, 1431-7613, 19, 10.1007/s12064-011-0148-6
    17. Jidi Zhao, Huajie Jin, Xun Li, Jianguo Jia, Chao Zhang, Huijuan Zhao, Wuren Ma, Zhuozhu Wang, Yi He, Jimmy Lee, Donglan Zhang, Bo Yin, Weiwei Zheng, Haiyin Wang, Mark Pennington, Disease Burden Attributable to the First Wave of COVID-19 in China and the Effect of Timing on the Cost-Effectiveness of Movement Restriction Policies, 2021, 10983015, 10.1016/j.jval.2020.12.009
    18. S. Namilae, A. Srinivasan, A. Mubayi, M. Scotch, R. Pahle, Self-propelled pedestrian dynamics model: Application to passenger movement and infection propagation in airplanes, 2017, 465, 03784371, 248, 10.1016/j.physa.2016.08.028
    19. Bechir Amdouni, Marlio Paredes, Christopher Kribs, Anuj Mubayi, Why do students quit school? Implications from a dynamical modelling study, 2017, 473, 1364-5021, 20160204, 10.1098/rspa.2016.0204
    20. Syed Azhar Ali Shah, Muhammad Altaf Khan, Muhammad Farooq, Saif Ullah, Ebraheem O. Alzahrani, A fractional order model for Hepatitis B virus with treatment via Atangana–Baleanu derivative, 2020, 538, 03784371, 122636, 10.1016/j.physa.2019.122636
    21. Baojun Song, Zhilan Feng, Gerardo Chowell, From the guest editors, 2013, 10, 1551-0018, 10.3934/mbe.2013.10.5i
    22. Mohammad A. Safi, Abba B. Gumel, Dynamics analysis of a quarantine model in two patches, 2015, 38, 01704214, 349, 10.1002/mma.3072
    23. Necibe Tuncer, Chindu Mohanakumar, Samuel Swanson, Maia Martcheva, Efficacy of control measures in the control of Ebola, Liberia 2014–2015, 2018, 12, 1751-3758, 913, 10.1080/17513758.2018.1535095
    24. Mohammad A. Safi, Abba B. Gumel, Dynamics of a model with quarantine-adjusted incidence and quarantine of susceptible individuals, 2013, 399, 0022247X, 565, 10.1016/j.jmaa.2012.10.015
    25. Joseph Y. T. Mugisha, Joseph Ssebuliba, Juliet N. Nakakawa, Cliff R. Kikawa, Amos Ssematimba, Siew Ann Cheong, Mathematical modeling of COVID-19 transmission dynamics in Uganda: Implications of complacency and early easing of lockdown, 2021, 16, 1932-6203, e0247456, 10.1371/journal.pone.0247456
    26. Fangyuan Chen, Jing'an Cui, 2016, Cross-species epidemic dynamic model of influenza, 978-1-5090-3710-0, 1567, 10.1109/CISP-BMEI.2016.7852965
    27. Barbara Nussbaumer-Streit, Verena Mayr, Andreea Iulia Dobrescu, Andrea Chapman, Emma Persad, Irma Klerings, Gernot Wagner, Uwe Siebert, Dominic Ledinger, Casey Zachariah, Gerald Gartlehner, Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review, 2020, 14651858, 10.1002/14651858.CD013574.pub2
    28. Caroline Orset, People’s perception and cost-effectiveness of home confinement during an influenza pandemic: evidence from the French case, 2018, 19, 1618-7598, 1335, 10.1007/s10198-018-0978-y
    29. Anuj Mubayi, Christopher Kribs-Zaleta, Priscilla Greenwood, Steve Szymanowski, Rasheed Hameed, Ridouan Bani, Influence of environmental factors on college alcohol drinking patterns, 2013, 10, 1551-0018, 1281, 10.3934/mbe.2013.10.1281
    30. Phontita Thiuthad, Valipuram S. Manoranjan, Yongwimon Lenbury, Analytical Solutions for an Avian Influenza Epidemic Model incorporating Spatial Spread as a Diffusive Process, 2015, 5, 2079-7362, 150, 10.4208/eajam.201114.080415a
    31. Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, 2019, Chapter 9, 978-1-4939-9826-5, 311, 10.1007/978-1-4939-9828-9_9
    32. Amit Kumar Gupta, Vijander Singh, Priya Mathur, Carlos M. Travieso-Gonzalez, Prediction of COVID-19 pandemic measuring criteria using support vector machine, prophet and linear regression models in Indian scenario, 2021, 24, 0972-0502, 89, 10.1080/09720502.2020.1833458
    33. Julio A. Benavides, Cristina Caparrós, Ramiro Monã da Silva, Tiziana Lembo, Philip Tem Dia, Katie Hampson, Feliciano Dos Santos, The Power of Music to Prevent and Control Emerging Infectious Diseases, 2021, 8, 2296-858X, 10.3389/fmed.2021.756152
    34. Anuj Mubayi, Abhishek Pandey, Christine Brasic, Anamika Mubayi, Parijat Ghosh, Aditi Ghosh, Analytical Estimation of Data-Motivated Time-Dependent Disease Transmission Rate: An Application to Ebola and Selected Public Health Problems, 2021, 6, 2414-6366, 141, 10.3390/tropicalmed6030141
    35. Cecilia Ajowho Adenusi, Olufunke Rebecca Vincent, Abiodun Folurera Ajayi, Bukola Taibat Adebiyi, 2022, Chapter 9, 978-3-030-87018-8, 151, 10.1007/978-3-030-87019-5_9
    36. Maria M. Martignoni, Josh Renault, Joseph Baafi, Amy Hurford, Maria Vittoria Barbarossa, Downsizing of COVID-19 contact tracing in highly immune populations, 2022, 17, 1932-6203, e0268586, 10.1371/journal.pone.0268586
    37. Anwarud Din, Asad Khan, Yassine Sabbar, Long-Term Bifurcation and Stochastic Optimal Control of a Triple-Delayed Ebola Virus Model with Vaccination and Quarantine Strategies, 2022, 6, 2504-3110, 578, 10.3390/fractalfract6100578
    38. Janetta E. Skarp, Laura E. Downey, Julius W. E. Ohrnberger, Lucia Cilloni, Alexandra B. Hogan, Abagael L. Sykes, Susannah S. Wang, Hiral Anil Shah, Mimi Xiao, Katharina Hauck, A Systematic Review of the Costs Relating to Non-pharmaceutical Interventions Against Infectious Disease Outbreaks, 2021, 19, 1175-5652, 673, 10.1007/s40258-021-00659-z
    39. Zhihong Pang, Burçin Becerik-Gerber, Simi Hoque, Zheng O’Neill, Giulia Pedrielli, Jin Wen, Teresa Wu, How Work From Home Has Affected the Occupant's Well-Being in the Residential Built Environment: An International Survey Amid the Covid-19 Pandemic, 2021, 2, 2642-6641, 10.1115/1.4052640
    40. Pankaj Bhardwaj, Nitin Kumar Joshi, Manoj Kumar Gupta, Akhil Dhanesh Goel, Suman Saurabh, Jaykaran Charan, Prakash Rajpurohit, Suresh Ola, Pritam Singh, Sunil Bisht, NR Bishnoi, Balwant Manda, Kuldeep Singh, Sanjeev Misra, Analysis of Facility and Home Isolation Strategies in COVID 19 Pandemic: Evidences from Jodhpur, India, 2021, Volume 14, 1178-6973, 2233, 10.2147/IDR.S309909
    41. Marcin Piotr Walkowiak, Dariusz Walkowiak, Jarosław Walkowiak, To vaccinate or to isolate? Establishing which intervention leads to measurable mortality reduction during the COVID-19 Delta wave in Poland, 2023, 11, 2296-2565, 10.3389/fpubh.2023.1221964
    42. Saumen Barua, Bornali Das, Attila Denes, A compartmental model for COVID-19 to assess effects of non-pharmaceutical interventions with emphasis on contact-based quarantine, 2023, 68, 02521938, 679, 10.24193/subbmath.2023.3.15
    43. M. Pitchaimani, U. Aswini, Long-term effect of SARS-CoV-2 variant : Challenging issues and controlling strategies, 2024, 03781119, 148554, 10.1016/j.gene.2024.148554
    44. M. Pitchaimani, U. Aswini, Delving a stochastic SEQAIJR COVID-19 model with hexa delayed and copious control strategies, 2024, 03781119, 148560, 10.1016/j.gene.2024.148560
    45. Ye Xia, An individual-level probabilistic model and solution for control of infectious diseases, 2024, 21, 1551-0018, 7253, 10.3934/mbe.2024320
    46. Shania Rossiter, Samantha Howe, Joshua Szanyi, James M. Trauer, Tim Wilson, Tony Blakely, The role of economic evaluation in modelling public health and social measures for pandemic policy: a systematic review, 2024, 22, 1478-7547, 10.1186/s12962-024-00585-6
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4767) PDF downloads(79) Cited by(2)

Article outline

Figures and Tables

Figures(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog