
Mathematical Biosciences and Engineering, 2019, 16(5): 46924707. doi: 10.3934/mbe.2019235
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Tuning extreme learning machine by an improved electromagnetismlike mechanism algorithm for classification problem
College of Engineering, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
Received: , Accepted: , Published:
Special Issues: Optimization methods in Intelligent Manufacturing
References
1. W. Cao, X. Wang, Z. Ming, et al., A review on neural networks with random weights, Neurocomputing, (2017), S0925231217314613.
2. G. CampsValls, D. Tuia, L. Bruzzone, et al., Advances in hyperspectral image classification: earth monitoring with statistical learning methods, IEEE Signal Proc. Mag., 31 (2013), 45–54.
3. L. Wang, Y. Zeng and T. Chen, Back propagation neural network with adaptive differential evolution algorithm for time series forecasting, Expert Syst. Appl., 42 (2015), 855–863.
4. E. Maggiori, Y. Tarabalka, G. Charpiat, et al., Convolutional neural networks for largescale remote sensing image classification, IEEE T. Geosci. Remote, 55 (2016), 645–657.
5. G. B. Huang, Q. Y. Zhu and C. K. Siew, Extreme learning machine: theory and applications, Neurocomputing, 70 (2006), 489–501.
6. J. Zhang, Y. F. Lu, B. Q. Zhang, et al., Devicefree localization using empirical wavelet transformbased extreme learning machine, Proceedings of the 30th Chinese Control and Decision Conference, (2018), 2585–2590.
7. Y. J. Li, S. Zhang, Y. X. Yin, et al., A soft sensing scheme of gas utilization prediction for blast furnace via improved extreme learning machine, Neural Process. Lett. (2018), 10.1007/s1106301898883.
8. J. Zhang, Y. F. Xu, J. Q. Xue, et al., Realtime prediction of solar radiation based on online sequential extreme learning machine, Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications, (2018), 53–57.
9. R. Z. Song, W. D. Xiao, Q. L. Wei, et al., Neuralnetworkbased approach to finitetime optimal control for a class of unknown nonlinear systems, Soft Comput., 18 (2014), 1645–1653.
10. J. Zhang, W. D. Xiao, Y. J. Li, et al., Multilayer probability extreme learning machine for devicefree localization. Neurocomputing, (2019), 10.1016/j.neucom.2018.11.106.
11. Y. Park, and H. S. Yang, Convolutional neural network based on an extreme learning machine for image classification, Neurocomputing, 339 (2019), 66–76.
12. G. B. Huang, H. Zhou, X. Ding, et al., Extreme learning machine for regression and multiclass classification, IEEE T. Syst. Man Cy. B., 42 (2012), 513–529.
13. F. Han, H. F. Yao and Q. H. Ling, An improved evolutionary extreme learning machine based on particle swarm optimization, Neurocomputing, 116 (2013), 87–93.
14. A. Rashno, B. Nazari, S. Sadri, et al., Effective pixel classification of mars images based on ant colony optimization feature selection and extreme learning machine, Neurocomputing, 226 (2017), 66–79.
15. G. Li, P. Niu, Y. Ma, et al., Tuning extreme learning machine by an improved artificial bee colony to model and optimize the boiler efficiency, KnowlBased Syst., 67 (2014), 278–289.
16. İ. B. Ş, and S. Fang, An electromagnetismlike mechanism for global optimization, J. Global Optim., 25 (2003), 263–282.
17. C. J. Zhang, X. Y. Li, L. Gao, et al., An improved electromagnetismlike mechanism algorithm for constrained optimization, Expert Syst. Appl., 40 (2013), 5621–5634.
18. C. T. Tseng, C. H. Lee, Y. S. P. Chiu, et al., A discrete electromagnetismlike mechanism for parallel machine scheduling under a grade of service provision, Int. J. Prod. Res., 55 (2017), 3149–3163.
19. X. Y. Li, L. Gao, Q. K. Pan, et al., An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop, IEEE T. Syst. Man Cy. Syst., (2018), 10.1109/TSMC.2018.2881686.
20. X. Y. Li, C. Lu, L. Gao, et al., An Effective MultiObjective Algorithm for Energy Efficient Scheduling in a RealLife Welding Shop, IEEE T. Ind. Inform., 14 (2018), 5400–5409.
21. X. Y. Li, S. Q. Xiao, C. Y. Wang, et al., Mathematical Modeling and a Discrete Artificial Bee Colony Algorithm for the Welding Shop Scheduling Problem, Memetic Comp., (2019), 10.1007/s12293019002834.
22. Q. Wu, L. Gao, X. Y. Li, et al., Applying an electromagnetismlike mechanism algorithm on parameter optimisation of a multipass milling process, Int. J. Prod. Res., 51 (2013), 1777–1788.
23. K. J. Wang, A. M. Adrian, K. H. Chen, et al., An improved electromagnetismlike mechanism algorithm and its application to the prediction of diabetes mellitus, J. Biomed. Inform., 54 (2015), 220–229.
24. S. Mirjalili, Dragonfly algorithm: a new metaheuristic optimization technique for solving singleobjective, discrete, and multiobjective problems, Neural Comput. Appl., 27 (2016), 1053–1073.
25. G. Huang, G. B. Huang, S. Song, et al., Trends in extreme learning machines: a review, Neural Networks, 61 (2015), 32–48.
26. P. L. Bartlett, The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network, IEEE T. Inform. Theory, 44 (2002), 525–536.
27. Q. Y. Zhu, A. K. Qin, P. N. Suganthan, et al., Evolutionary extreme learning machine, Pattern Recogn., 38 (2005), 1759–1763.
28. D. Dua, and E. K. Taniskidou, UCI Machine Learning Repository Irvine, CA: University of California, School of Information and Computer Science, 2017. Available from: http://archive.ics.uci.edu/ml.
29. Y. Wang, A. Wang, Q. Ai, et al., A novel artificial bee colony optimization strategybased extreme learning machine algorithm, Prog. Artif. Intell., 6 (2016), 1–12.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)