Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Continuous variable quantum steganography protocol based on quantum identity

1 Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
2 School of Electronic & Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China
3 School of Computer Science, Xi’an Polytechnic University, Xi’an 710048, P. R. China
4 School of Electronic Engineering, Dublin City University, Dublin, Ireland

Based on quantum identity authentication, a novel continuous variable quantum steganography protocol is proposed in this paper. It can effectively transmit deterministic secret information in the public quantum channel by taking full advantage of entanglement properties of continuous variable GHZ state. Compared with the existing quantum steganography results, this protocol has the advantages of good imperceptibility and easy implementation. Finally, the detailed performance analysis proves that the proposed protocol has not only these advantages, but also good security and information transmission efficiency, even under eavesdropping attacks, especially to the spectroscopic noise attack.
  Article Metrics

Keywords quantum steganography; continuous variable GHZ state; spectroscopic noise attack

Citation: Zhiguo Qu, Leiming Jiang, Le Sun, Mingming Wang, Xiaojun Wang. Continuous variable quantum steganography protocol based on quantum identity. Mathematical Biosciences and Engineering, 2019, 16(5): 4182-4195. doi: 10.3934/mbe.2019208


  • 1. C. H. Bennett and G. Brassard, Quantum cryptography: public-key distribution and coin tossing, Theor. Comput. Sci., 560 (2014), 7–11.
  • 2. E. Diamanti, H. K. Lo and B. Qi, Practical challenges in quantum key distribution, NPJ Quantum Inform., 2 (2017), 1–9.
  • 3. M. Tomamichel and A. Leverrier, A largely self-contained and complete security proof for quantum key distribution, Quantum, 1 (2017), 14–23.
  • 4. W. J. Liu, Y. Xu, C. N. Yang, et al., An efficient and secure arbitrary n-party quantum key agreement protocol using Bell states, Int. J. Theor. Phys., 57 (2018), 195–207.
  • 5. H. H. Chang, J. Heo and G. J. Jin, Quantum identity authentication with single photon, Quantum Inf. Process., 16 (2017), 236–246.
  • 6. A. Tavakoli, I. Herbauts and M. ˙ zukowski, Secret sharing with a single d-level quantum system, Phys. Rev. A, 92 (2015), 1–10.
  • 7. C. M. Bai, Z. H. Li and T. T. Xu, Quantum secret sharing using the d-dimensional GHZ state, Quantum Inf. Process., 16 (2017), 59–70.
  • 8. X. B. Chen, X. Tang, G. Xu, et al., Cryptanalysis of secret sharing with a single d-level quantum system, Quantum Inf. Process., 17 (2018), 225–235.
  • 9. W. Li, J. Chen and X. Wang, Quantum secure direct communication achieved by using multi-entanglement, Int. J. Theor. Phys., 54 (2015), 100–105.
  • 10. J. Y. Hu, B. Yu and M. Y. Jing, Experimental quantum secure direct communication with single photons, Light-SCI. Appl., 5 (2016), e16144.
  • 11. W. J. Liu, Z. Y. Chen, J. S. Liu, et al., Full-blind delegating private quantum computation, Comput. Mater. Con., 56 (2018), 211–223.
  • 12. Z. G. Qu, S. Y. Wu, M. M. Wang, et al., Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels, Quantum Inf. Process., 16 (2017), 1–25.
  • 13. X. B. Chen, Y. R. Sun, G. Xu, et al., Controlled bidirectional remote preparation of three-qubit state, Quantum Inf. Process., 16 (2017), 244–254.
  • 14. M. M. Wang, C. Yang and R. Mousoli, Controlled cyclic remote state preparation of arbitrary qubit states, Comput. Mater. Con., 55 (2018), 321–329.
  • 15. G. Xu, X. B. Chen and J. Li, Network coding for quantum cooperative multicast, Quantum Inf. Process., 14 (2015), 4297–4307.
  • 16. Z. G. Qu, J. Keeney, S. Robitzsch, et al., Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks, China. Commun., 13 (2016), 108–116.
  • 17. W. J. Liu, H. B. Wang, G. L. Yuan, et al., Multiparty quantum sealed-bid auction using single photons as message carrier, Quantum Inf. Process., 15 (2016), 869–879.
  • 18. W. J. Liu, P. P. Gao, W. B. Yu, et al., Quantum Relief algorithm, Quantum Inf. Process., 17 (2018), 280–290.
  • 19. J. W. Wang, T. Li, X. Y. Luo, et al., Identifying computer generated images based on quaternion central moments in color quaternion wavelet domain, IEEE T. Circ. Syst. Vid., (2018), online. DOI: 10.1109/TCSVT.2018.2867786.
  • 20. L. Liu, G. M. Tang and Y. F. Sun, Quantum steganography for multi-party covert communication, Int. J. Theor. Phys., 55 (2016), 1–11.
  • 21. T. Mihara, Multi-party quantum steganography, Int. J. Theor. Phys., 56 (2017), 1–8.
  • 22. Z. G. Qu, S. Y. Chen, S. Ji, et al., Anti-noise bidirectional quantum steganography qrotocol with large payload, Int. J. Theor. Phys., 57 (2018), 1–25.
  • 23. Z. G. Qu, T. C. Zhu and J. W. Wang, A novel quantum steganography based on Brown states, Comput. Mater. Con., 1 (2018), 47–59.
  • 24. S. Wang, J. Sang and X. Song, Least significant qubit (LSQb) information hiding algorithm for quantum image, Measurement, 73 (2015), 352–359.
  • 25. N. Jiang, N. Zhao and L. Wang, LSB based quantum image steganography algorithm, Int. J. Theor. Phys., 55 (2016), 1–17.
  • 26. Z. G. Qu, Z. W. Cheng, W. J. Liu, et al., A novel quantum image steganography algorithm based on exploiting modification direction, Multimed. Tools. Appl., (2018), online. DOI: 10.1007/s10773-018-3716-4
  • 27. F. Grosshans and P. Grangier, Continuous variable quantum cryptography using coherent states, Phys. Rev. Lett., 88 (2002), 057902.
  • 28. S. Olivares, M.G.A. Paris and R. Bonifacio, Teleportation improvement by inconclusive photon subtraction, Phys. Rev. A, 67 (2003), 032314.
  • 29. J. N. Wu, S. Y. Liu, L. Y. Hu, et al., Improving entanglement of even entangled coherent states by a coherent superposition of photon subtraction and addition, J. Opt. Soc. Am. B, 32 (2015), 2299.
  • 30. Y. Guo, W. Ye, H. Zhong, et al., Continuous-variable quantum key distribution with non-Gaussian quantum catalysis, Phys. Rev. A, 99 (2019), 032327.
  • 31. L. P. Van and S. L. Braunstein, Multipartite entanglement for continuous variables: a quantum teleportation network, Phys. Rev. Lett., 84 (2000), 3482–3485.
  • 32. H. Ma, P. Huang and W. Bao, Continuous-variable quantum identity authentication based on quantum teleportation, Quantum Inf. Process., 15 (2016), 2605–2620.
  • 33. C. Berrou and A. Glavieux, Near optimum error correcting coding and decoding: turbo-codes, IEEE T. Commun., 44 (1996), 1261–1271.
  • 34. R. G. Gallager, Low-density parity-check codes, IEEE Commun. Surv. Tut., 13 (2011), 3–26.
  • 35. T. C. Ralph, Continuous variable quantum cryptography, Phys. Rev. A, 61 (1999), 010303.
  • 36. W. P. Bowen, N. Treps, B. C. Buchler, et al., Experimental investigation of continuous-variable quantum teleportation, Phys. Rev. A, 67 (2003), 032302.
  • 37. J. Z. Huang, C. Weedbrook, Z. Q. Yin, et al., Quantum hacking on continuous-variable quantum key distribution system using a wavelength attack, Phys. Rev. A, 87 (2013), 062329.


Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved