Research article Special Issues

Numerical study of discretization algorithms for stable estimation of disease parameters and epidemic forecasting

  • In this paper we investigate how various discretization schemes could be incorporated in regularization algorithms for stable parameter estimation and forecasting in epidemiology. Specifically, we compare parametric and nonparametric discretization tools in terms of their impact on the accuracy of recovered disease parameters as well as their impact on future projections of new incidence cases. Both synthetic and real data for 1918 ``Spanish Flu" pandemic in San Francisco are considered. The discrete approximation of a time dependent transmission rate is combined with the Levenberg-Marquardt algorithm used to solve the nonlinear least squares problem aimed at fitting the model to limited incidence data for an unfolding outbreak. Our simulation study highlights the crucial role of a priori information at the early stage of an epidemic in mitigating the lack of stability in over-parameterized models with insufficient data. Fortunately, our results suggest that a balanced combination of problem-oriented regularization techniques is one way in which scientists can still draw useful conclusions about system parameters and in turn generate reliable forecasts that policy makers could use to guide control interventions.

    Citation: Aurelie Akossi, Gerardo Chowell-Puente, Alexandra Smirnova. Numerical study of discretization algorithms for stable estimation of disease parameters and epidemic forecasting[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3674-3693. doi: 10.3934/mbe.2019182

    Related Papers:

    [1] Jean-Marc Bomont, Dino Costa, Jean-Louis Bretonnet . Large effects of tiny structural changes on the cluster formation process in model colloidal fluids: an integral equation study. AIMS Materials Science, 2020, 7(2): 170-181. doi: 10.3934/matersci.2020.2.170
    [2] Anna Godymchuk, Alexey Ilyashenko, Yury Konyukhov, Peter Ogbuna Offor, Galiya Baisalova . Agglomeration and dissolution of iron oxide nanoparticles in simplest biological media. AIMS Materials Science, 2022, 9(4): 642-652. doi: 10.3934/matersci.2022039
    [3] Jean-Louis Bretonnet, Jean-François Wax . Applicability conditions of the Stokes formula. AIMS Materials Science, 2021, 8(5): 809-822. doi: 10.3934/matersci.2021049
    [4] Domenico Lombardo, Pietro Calandra, Maria Teresa Caccamo, Salvatore Magazù, Mikhail Alekseyevich Kiselev . Colloidal stability of liposomes. AIMS Materials Science, 2019, 6(2): 200-213. doi: 10.3934/matersci.2019.2.200
    [5] Julien G. Mahy, Stéphanie D. Lambert, Jérémy Geens, Alain Daniel, David Wicky, Catherine Archambeau, Benoît Heinrichs . Large scale production of photocatalytic TiO2 coating for volatile organic compound (VOC) air remediation. AIMS Materials Science, 2018, 5(5): 945-956. doi: 10.3934/matersci.2018.5.945
    [6] John Campbell . Crack populations in metals. AIMS Materials Science, 2016, 3(4): 1436-1442. doi: 10.3934/matersci.2016.4.1436
    [7] Leonid A. Kaledin, Fred Tepper, Tatiana G. Kaledin . Electrokinetic aspects of water filtration by AlOOH-coated siliceous particles with nanoscale roughness. AIMS Materials Science, 2017, 4(2): 470-486. doi: 10.3934/matersci.2017.2.470
    [8] Leonid A. Kaledin, Fred Tepper, Yuly Vesga, Tatiana G. Kaledin . The effect of the surface roughness and ageing characteristics of boehmite on the removal of biological particles from aqueous solution. AIMS Materials Science, 2019, 6(4): 498-508. doi: 10.3934/matersci.2019.4.498
    [9] Michael Z. Hu, Peng Lai . Substrate effect on nanoporous structure of silica wires by channel-confined self-assembly of block-copolymer and sol-gel precursors. AIMS Materials Science, 2015, 2(4): 346-355. doi: 10.3934/matersci.2015.4.346
    [10] Volodymyr Ivanov, Viktor Stabnikov, Olena Stabnikova, Anatoliy Salyuk, Evhenii Shapovalov, Zubair Ahmed, Joo Hwa Tay . Iron-containing clay and hematite iron ore in slurry-phase anaerobic digestion of chicken manure. AIMS Materials Science, 2019, 6(5): 821-832. doi: 10.3934/matersci.2019.5.821
  • In this paper we investigate how various discretization schemes could be incorporated in regularization algorithms for stable parameter estimation and forecasting in epidemiology. Specifically, we compare parametric and nonparametric discretization tools in terms of their impact on the accuracy of recovered disease parameters as well as their impact on future projections of new incidence cases. Both synthetic and real data for 1918 ``Spanish Flu" pandemic in San Francisco are considered. The discrete approximation of a time dependent transmission rate is combined with the Levenberg-Marquardt algorithm used to solve the nonlinear least squares problem aimed at fitting the model to limited incidence data for an unfolding outbreak. Our simulation study highlights the crucial role of a priori information at the early stage of an epidemic in mitigating the lack of stability in over-parameterized models with insufficient data. Fortunately, our results suggest that a balanced combination of problem-oriented regularization techniques is one way in which scientists can still draw useful conclusions about system parameters and in turn generate reliable forecasts that policy makers could use to guide control interventions.




    [1] N. Tuncer, C. Mohanakumar, S. Swanson, et al., E cacy of control measures in the control of Ebola, Liberia 2014–2015, J. Biol. Dynam., 12 (2018), 913–937.
    [2] N. Tuncer, M. Marctheva, B. LaBarre, et al., Structural and practical identifiability analysis of ZIKA epidemiological models, B. Math. Biol., 80 (2018), 2209–2241.
    [3] G. Chowell, L. Sattenspiel, S. Bansal, et al., Mathematical models to characterize early epidemic growth: a review, Phys. life rev., 18 (2016), 66–97.
    [4] A. B. Bakunshinsky and M. Yu. Kokurin, Iterative methods for Ill-Posed Operator Equations with Smooth Operators, Springer, Dordrecht, Great Britain, 2004.
    [5] H. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Pub-lisher, Dordecht, Boston, London, 1996.
    [6] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlin-ear Equations, Prentice-Hall, Englewood Cli s, New Jersey, 1983.
    [7] J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.
    [8] A. Smirnova, R. Renaut and T. Khan, Convergence and applications of a modified iteratively regularized Gauss-Newton algorithm, Inverse Probl., 23 (2007), 1546–1563.
    [9] R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press Inc, New York, 1992.
    [10] C. de Boor, A Practical Guide to Splines, Springer-Verlag, 1978.
    [11] B. Efron and R. Tibshirani, Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy, Stat. Sci., 1 (1986), 54–75.
    [12] G. Chowell, C. E. Ammon, N.W. Hengartner, et. al., Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the e ects of hypothetical interventions, J. Theor. Biol, 241 (2006), 193–204.
    [13] B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative regularization methods for nonlinear illposed problems, Radon Series on Computational and Applied Mathematics, 6, Walter de Gruyter, Berlin, 2008.
    [14] A. Sirmnova, B. Sirb and G. Chowell, On stable parameter estimation and forecasting in epidemi-ology by the Levenberg-Marquardt Algorithm with Broyden's rank-one updates for the Jacobian operator, B. Math. Biol., 2019.
    [15] G. Chowell, M. MacLachan and E. P. Fenichel, Accounting for behavioral responses during a flu epidemic using home television viewing, BMC Infect. Dis., 15 (2015), 21.
    [16] P. Guo, Q. Zhang, Y. Chen, et al., An ensemble forecast model of dengue in Guangzhou, China using climate and social media surveillance data, Sci. Total Environ., 647 (2019), 752–762.
    [17] L. Kim, S. M. Fast and N. Markuzon, Incorporating media data into a model of infectious disease transmission, PLoS One 14 (2019), e0197646.
    [18] C. A Marques-Toledo, C. M. Degener, L. Vinhal, et al., Dengue prediction by the web: Tweets are a useful tool for estimating and forecasting Dengue at country and city level, PLoS Negl. Trop. Dis., 11 (2017), e0005729.
    [19] Y. Teng, D. Bi, G. Xie, et al., Dynamic forecasting of Zika epidemics using google trends, PLoS One, 12 (2017), e0165085.
  • This article has been cited by:

    1. Jean-Marc Bomont, Dino Costa, Jean-Louis Bretonnet, Local order and cluster formation in model fluids with competing interactions: a simulation and theoretical study, 2020, 22, 1463-9076, 5355, 10.1039/C9CP06710H
    2. M. Khatouri, R. Ahfir, M. Lemaalam, S. El Khaoui, A. Derouiche, M. Filali, Effect of hydrophobically modified PEO polymers (PEO-dodecyl) on oil/water microemulsion properties: in vitro and in silico investigations, 2021, 11, 2046-2069, 7059, 10.1039/D0RA09804C
    3. Manal A. Awad, Awatif A. Hendi, Khalid Mustafa Ortashi, Batool Alzahrani, Dina Soliman, Amnah Alanazi, Wadha Alenazi, Rasha Mohammed Taha, Rasha Ramadan, Maha El-Tohamy, Najla AlMasoud, Taghrid S. Alomar, Biogenic synthesis of silver nanoparticles using Trigonella foenum-graecum seed extract: Characterization, photocatalytic and antibacterial activities, 2021, 323, 09244247, 112670, 10.1016/j.sna.2021.112670
    4. Jean-Marc Bomont, Dino Costa, Jean-Louis Bretonnet, Large effects of tiny structural changes on the cluster formation process in model colloidal fluids: an integral equation study, 2020, 7, 2372-0484, 170, 10.3934/matersci.2020.2.170
    5. T.P.O. Nogueira, José Rafael Bordin, Patterns in 2D core-softened systems: From sphere to dumbbell colloids, 2022, 605, 03784371, 128048, 10.1016/j.physa.2022.128048
    6. Julia Dshemuchadse, Soft matter crystallography—Complex, diverse, and new crystal structures in condensed materials on the mesoscale, 2022, 131, 0021-8979, 020901, 10.1063/5.0072017
    7. Gianmarco Munaò, Dino Costa, Gianpietro Malescio, Jean-Marc Bomont, Santi Prestipino, Competition between clustering and phase separation in binary mixtures containing SALR particles, 2022, 18, 1744-683X, 6453, 10.1039/D2SM00944G
    8. M. Khatouri, M. Lemaalem, R. Ahfir, S. El Khaoui, A. Derouiche, M. Filali, Sol/gel transition of oil/water microemulsions controlled by surface grafted triblock copolymer dodecyl–PEO227–dodecyl: molecular dynamics simulations with experimentally validated interaction potential, 2021, 11, 2046-2069, 20824, 10.1039/D1RA02649F
    9. Gianmarco Munaò, Santi Prestipino, Dino Costa, Early stages of aggregation in fluid mixtures of dimers and spheres: a theoretical and simulation study, 2021, 23, 1463-9076, 22661, 10.1039/D1CP03604A
    10. Gianmarco Munaò, Santi Prestipino, Jean-Marc Bomont, Dino Costa, Clustering in Mixtures of SALR Particles and Hard Spheres with Cross Attraction, 2022, 126, 1520-6106, 2027, 10.1021/acs.jpcb.1c09758
    11. Murilo Sodré Marques, José Rafael Bordin, Interplay between adsorption, aggregation and diffusion in confined core-softened colloids, 2021, 4, 2666934X, 100029, 10.1016/j.jciso.2021.100029
    12. I. Kravtsiv, T. Patsahan, M. Holovko, D. di Caprio, Soft core fluid with competing interactions at a hard wall, 2022, 362, 01677322, 119652, 10.1016/j.molliq.2022.119652
    13. Dino Costa, Gianmarco Munaò, Jean-Marc Bomont, Gianpietro Malescio, Amedeo Palatella, Santi Prestipino, Microphase versus macrophase separation in the square-well-linear fluid: A theoretical and computational study, 2023, 108, 2470-0045, 10.1103/PhysRevE.108.034602
    14. Ana M. Montero, Santos B. Yuste, Andrés Santos, Mariano López de Haro, Discontinuous Structural Transitions in Fluids with Competing Interactions, 2025, 27, 1099-4300, 95, 10.3390/e27010095
    15. D. C. Thakur, Jalim Singh, A. V. Anil Kumar, Phase separation in a binary mixture of sticky spheres, 2025, 163, 0021-9606, 10.1063/5.0266285
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5313) PDF downloads(606) Cited by(5)

Article outline

Figures and Tables

Figures(24)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog