
Mathematical Biosciences and Engineering, 2019, 16(4): 29272941. doi: 10.3934/mbe.2019144.
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Effect of nanoparticles on MHD flow of tangent hyperbolic fluid in a ciliated tube: an application to fallopian tube
1 Department of Mathematics & Statistics, International Islamic University, Islamabad 44000, Pakistan
2 Department of Mathematics, York Campus, Pennsylvania State University, York, Pennsylvania 17403, U. S. A
Received: , Accepted: , Published:
Keywords: nano particles; MHD; tangent hyperbolic fluid; ciliated axisymmetric tube; porous medium
Citation: K. Maqbool, S. Shaheen, A. M. Siddiqui. Effect of nanoparticles on MHD flow of tangent hyperbolic fluid in a ciliated tube: an application to fallopian tube. Mathematical Biosciences and Engineering, 2019, 16(4): 29272941. doi: 10.3934/mbe.2019144
References:
 1. S. M. Mousazadeh, M. M. Shahmardan, T. Tavang, et al., Numerical investigation on convective heat transfer over two heated wallmounted cubes in tandem and staggered arrangement, Theor. Appl., 8 (2018), 171–183.
 2. S. S. Ghadikolaei, S. S. Hosseinzadeh, K. Ganji, et al., Fe_{3}O_{4}(CH_{2}OH)_{2} nanofluid analysis in a porous medium under MHD radiative boundary layer and dusty fluid, J. Mol. Liq., 258 (2018), 172–185.
 3. A. Karampatzakis and T. Samaras, Numerical model of heat transfer in the human eye with consideration of fluid dynamics of the aqueous humour, Phys. Med. Bio., 55 (2010), 5653.
 4. Tripathi, S. K. Pandey and O. A. Bég, Mathematical modelling of heat transfer effects on swallowing dynamics of viscoelastic food bolus through the human oesophagus, Int. J. Therm. Sci., 70 (2013), 41–53.
 5. A. Zaman, N. Ali, O.A. Bég, et al., Heat and mass transfer to blood flowing through a tapered overlapping stenosed artery, Int. J. Heat. Mass. Tran., 95 (2016), 1084–1095.
 6. S. U. S. Choi and J. A. Estman, Enhancing thermal conductivity of fluids with nanoparticles, ASMEPublicationsFed, 231 (1995), 99–106.
 7. W. Dongsheng and Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat. Mass. Tran., 47 (2004), 5181–5188.
 8. S. Maïga, T. Nguyen, N. Galanis, et al., Heat transfer enhancement in turbulent tube flow using Al_{2}O_{3} nanoparticle suspension, Int. J. Numer. Method. H., 16 (2006), 275–292.
 9. S. Ibsen, A. Sonnenberg, C. Schutt, et al., Recovery of drug delivery nanoparticles from human plasma using an electrokinetic platform technology, Small, 11 (2015), 5088–5096.
 10. M. A. Sleigh, J. R. Blake and N. Liron, The propulsion of mucus by cilia, Amer. Rev. Resp. Dis., 137 (1988), 726–741.
 11. C. Brennen and H. Winet, Fluid mechanics of propulsion by cilia and flagella, Annu. Rev. Fluid. Mech., 9 (1977), 339–398.
 12. M. J. Sanderson and M. A. Sleigh, Ciliary activity of cultured rabbit tracheal epithelium: beat pattern and metachrony, J. Cell. Sci., 47 (1981), 331–347.
 13. A. Murakami and K. Takahashi, Correlation of electrical and mechanical responses in nervous control of cilia, Nature, 257 (1975), 48.
 14. J. Blake, A model for the microstructure in ciliated organisms, J. Fluid. Mech., 55 (1972), 1–23.
 15. R. A. Lyons, E. Saridogan and O. Djahanbakhch, The reproductive significance of human Fallopian tube cilia, Hum. Reprod. Update, 12 (2006), 363–372.
 16. M. B. Carlson, Human Embryology and Developmental Biology, Elsevier Health Sciences, 2012.
 17. R. A. Lyons, E. Saridogan and O. Djahanbakhch, The effect of ovarian follicular fluid and peritoneal fluid on Fallopian tube ciliary beat frequency, Hum. Reprod., 21 (2005), 52–56.
 18. K. Maqbool, S. Shaheen and A. B. Mann, Exact solution of cilia induced flow of a Jeffrey fluid in an inclined tube, Springerplus, 5 (2016), 1379.
 19. K. Maqbool, A. B. Mann and A. M. Siddiqui, et al., Fractional generalized Burgers' fluid flow due to metachronal waves of cilia in an inclined tube, Adv. Mech. Eng., 9 (2017), 1687814017715565.
 20. A. M. Siddiqui, A. Sohail and K. Maqbool, Analysis of a channel and tube flow induced by cilia, Appl. Math. Comp., 309 (2017), 133–141.
 21. A. A. Khan, F. Zaib and A. Zaman, Effects of entropy generation on Powell Eyring fluid in a porous channel, J. Braz. Soc. Mech. Sci. Eng., 39 (2017), 5027–5036.
 22. M. S. Alam, M. A. Alim and M. A. Hakim, Entropy generation analysis for variable thermal conductivity MHD radiative nanofluid flow through channel, J. Appl. Fluid. Mech., 9 (2016).
 23. N. S. Akbar, Z. H. Khan and S. Nadeem, Influence of magnetic field and slip on Jeffrey fluid in a ciliated symmetric channel with metachronal wave pattern, J. Appl. Fluid. Mech., 9 (2016), 565–572.
 24. N. S. Akbar, M. Shoaib and D. Tripathi, et al., Analytical approach to entropy generation and heat transfer in CNTnanofluid dynamics through a ciliated porous medium, J. Hydrodyn., 30 (2018), 296–306.
 25. U. Mercke, The influence of varying air humidity on mucociliary activity, Acta. OtoLaryngol., 79 (1975), 133–139.
 26. S. N. Khaderi, C. B. Craus, J. Hussong, et al., Magneticallyactuated artificial cilia for microfluidic propulsion, Lab. Chip., 11 (2011), 2002–2010.
 27. N. S. Akbar, D. Tripathi, Z. H. Khan, et al., Mathematical model for ciliaryinduced transport in MHD flow of CuH₂O nanofluids with magnetic induction, Chinese. J. Phys., 55 (2017), 947–962.
 28. M. Hassan, A. Zeeshan, A. Majeed, et al., Particle shape effects on ferrofuids flow and heat transfer under influence of low oscillating magnetic field, J. Magn. Mater., 443 (2017), 36–44.
 29. S. Rashidi, S. Akbar, M. Bovand, et al,. Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still, Renew. Energ., 115 (2018): 400–410.
 30. M. Hassan, M. Marin, R. Ellahi, et al., Exploration of convective heat transfer and flow characteristics synthesis by CuAg/water hybridnanofluids, Heat. Transf. Res., 49 (2018).
 31. A. Majeed, A. Zeeshan, A. Z. Sultan, et al., Heat transfer analysis in ferromagnetic viscoelastic fluid flow over a stretching sheet with suction, Neural. Comput. Appl., 30 (2018): 1947–1955.
 32. A. Zeeshan, N. Ijaz, T. Abbas, et al., The sustainable characteristic of biobiphase flow of peristaltic transport of MHD Jeffrey fluid in the human body, SustainabilityBasel., 10 (2018), 2671.
 33. M. Akbarzadeh, S. Rashidi, N. Karimi, et al., Convection of heat and thermodynamic irreversibilities in twophase, turbulent nanofluid flows in solar heaters by corrugated absorber plates, Adv. Powder. Technol., 29 (2018), 2243–2254.
 34. S. Z, Alamri, R. Ellahi, N. Shehzad, et al., Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: An application of Stefan blowing, J. Mol. Liq., 273 (2019), 292–304.
 35. N. Shehzad, A. Zeeshan, R. Ellahi, et al., Modelling study on internal energy loss due to entropy generation for nondarcy poiseuille flow of silverwater nanofluid: An application of purification, Entropy, 20 (2018), 851.
 36. M. M. Bhatti, A. Zeeshan, R. Ellahi, et al., Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of twophase flow through a DarcyBrinkmanForchheimer porous medium, Adv. Powder. Technol., 29 (2018), 1189–1197.
 37. R. Ellahi, S. Z. Alamri, A. Basit, et al., Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation, J. Taibah. Uni. Sci., (2018), 1–7.
 38. C. Fetecau, R. Ellahi, M. Khan, et al., Combined porous and magnetic effects on some fundamental motions of Newtonian fluids over an infinite plate, J. Porous. Media., 21 (2018).
 39. S. Z. Alamri, A. A. Khan, M. Azeez, et al., Effects of mass transfer on MHD second grade fluid towards stretching cylinder: A novel perspective of CattaneoChristov heat flux model, Phys. Lett. A., 383 (2019), 276–281.
 40. S. Z. Alamri, R. Ellahi, N. Shehzad, et al., Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: An application of Stefan blowing, J. Mol. Liq., 273 (2019), 292–304.
 41. T. Hayat, M. Shafique, A. Tanveer, et al., Magnetohydrodynamic effects on peristaltic flow of hyperbolic tangent nanofluid with slip conditions and Joule heating in an inclined channel, Int. J. Heat. Mass. Tran., 102 (2016), 54–63.
 42. A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Beijing and Springer, Verlag Berlin Heidelberg, 2009.
 43. A. M. Siddiqui, A. A. Farooq and M. A. Rana, Study of MHD effects on the ciliainduced flow of a Newtonian fluid through a cylindrical tube, Magnetohydrodynamics, 50 (2014), 249–261.
This article has been cited by:
 1. M. Awais, Zahir Shah, N. Perveen, Aamir Ali, Poom Kumam, Habib ur Rehman, Phatiphat Thounthong, MHD Effects on CiliaryInduced Peristaltic Flow Coatings with Rheological Hybrid Nanofluid, Coatings, 2020, 10, 2, 186, 10.3390/coatings10020186
 2. Sidra Shaheen, Khadija Maqbool, Abdul Majeed Siddiqui, Micro rheology of Jeffrey nanofluid through cilia beating subject to the surrounding temperature, Rheologica Acta, 2020, 10.1007/s00397020012228
 3. H Thameem Basha, R Sivaraj, Numerical simulation of blood nanofluid flow over three different geometries by means of gyrotactic microorganisms: Applications to the flow in a circulatory system, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 095440622094745, 10.1177/0954406220947454
 4. M. V. Podolyuk, Morphofunctional Organization of the Uterine Tubes in the Conditions of Pathology, Ukraïnsʹkij žurnal medicini, bìologìï ta sportu, 2020, 5, 4, 44, 10.26693/jmbs05.04.044
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *