Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Mechano-biological model of glioblastoma cells in response to osmotic stress

1 MOX Laboratory, Department of Mathematics, Politecnico di Milano, Italy
2 IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
3 Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
4 DISMA, Dipartimento di Scienze Matematiche ”G.L. Lagrange”, Politecnico di Torino, Italy

Special Issues: Differential Equations in Mathematical Biology

This work investigates the mechano-biological features of cells cultured in monolayers in response to different osmotic conditions. In-vitro experiments have been performed to quantify the long-term effects of prolonged osmotic stresses on the morphology and proliferation capacity of glioblastoma cells. The experimental results highlight that both hypotonic and hypertonic conditions affect the proliferative rate of glioblastoma cells on different cell cycle phases. Moreover, glioblastoma cells in hypertonic conditions display a flattened and elongated shape. The latter effect is explained using a nonlinear elastic model for the single cell. Due to a crossover between the free energy contributions related to the cytosol and the cytoskeletal fibers, a critical osmotic stress determines a morphological transition from a uniformly compressed to an elongated shape.
  Article Metrics

Keywords mechano-biology; cancer model; biomathematics; glioblastoma; osmotic stress

Citation: Giulia Pozzi, Stefano Marchesi, Giorgio Scita, Davide Ambrosi, Pasquale Ciarletta. Mechano-biological model of glioblastoma cells in response to osmotic stress. Mathematical Biosciences and Engineering, 2019, 16(4): 2795-2810. doi: 10.3934/mbe.2019139


  • 1. M. Goodenberger and R. Jenkins, Genetics of adult glioma, Cancer Genet., 205 (2012), 613–621.
  • 2. H. Ohgaki and P. Kleihues, The definition of primary and secondary glioblastoma, Clin. Cancer Res., pages clincanres–3002, 2012.
  • 3. D. Orringer, D. Lau, S. Khatri, et al., Extent of resection in patients with glioblastoma: limiting factors, perception of resectability, and effect on survival, J. Neurosurg., 117 (2012), 851–859.
  • 4. B. Mukherjee, B. McEllin, C. V. Camacho, et al., Egfrviii and dna double-strand break repair: a molecular mechanism for radioresistance in glioblastoma. Cancer Res., 69 (2009), 4252–4259.
  • 5. S. Carlsson, S. Brothers and C. Wahlestedt. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol. Med., e201302627, 2014.
  • 6. M. C. Mabray, R. F. Barajas and S. Cha, Modern brain tumor imaging, Brain Tumor Res. Treat., 3 (2015), 8–23.
  • 7. J. Folkman and M. Hochberg, Self-regulation of growth in three dimensions, J. Exp. Med., 138 (1973), 745–753.
  • 8. R. M. Sutherland, Cell and environment interactions in tumor microregions: the multicell spheroid model, Science, 240 (1988), 177–184.
  • 9. R. M. Sutherland, J. A. McCredie and W. R. Inch, Growth of multicell spheroids in tissue culture as a model of nodular carcinomas, J. Natl. Cancer Inst., 46 (1971), 113–120.
  • 10. G. Helmlinger, P. Netti, H. Lichtenbeld, et al., Solid stress inhibits the growth of multicellular tumor spheroids, Nature Biotech., 15 (1997), 778.
  • 11. G. Cheng, J. Tse, R. Jain, et al., Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells, PLoS One, 4 (2009), e4632.
  • 12. F. Montel, M. Delarue, J. Elgeti, et al., Stress clamp experiments on multicellular tumor spheroids. Phys. Rev. Lett., 107 (2011), 188102.
  • 13. F. Montel, M. Delarue, J. Elgeti, et al., Isotropic stress reduces cell proliferation in tumor spheroids. New J. Phys., 14 (2012), 055008.
  • 14. P. Mascheroni, C. Stigliano, M. Carfagna, et al., Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model, Biomech. Model. Mechanobiol., 15 (2016), 1215–1228.
  • 15. B. Bober, J. Love, S. Horton, et al., Actin–myosin network influences morphological response of neuronal cells to altered osmolarity. Cytoskeleton, 72 (2015), 193–206.
  • 16. F. Guilak, G. Erickson and H. Ting-Beall, The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes, Biophys. J., 82 (2002), 720–727.
  • 17. C. La Porta, A. Ghilardi, M. Pasini, et al., Osmotic stress affects functional properties of human melanoma cell lines, Eur. Phys. J. Plus, 130 (2015), 64.
  • 18. A. Taloni, A. A. Alemi, E. Ciusani, et al., Mechanical properties of growing melanocytic nevi and the progression to melanoma. PloS One, 9 (2014), e94229.
  • 19. G. Tao, L. Rott, A. Lowe, et al., Hyposmotic stress induces cell growth arrest via proteasome activation and cyclin/cyclin-dependent kinase degradation, J. Biol. Chem., 277 (2002), 19295– 19303.
  • 20. M. Delarue, F. Montel, D. Vignjevic, et al., Compressive stress inhibits proliferation in tumor spheroids through a volume limitation, Biophys. J., 107 (2014), 1821–1828.
  • 21. K. Tsujita, T. Takenawa and T. Itoh, Feedback regulation between plasma membrane tension and membrane-bending proteins organizes cell polarity during leading edge formation, Nature Cell Biol., 17 (2015), 749.
  • 22. J. Schindelin, I. Arganda-Carreras, E. Frise, et al., Fiji: an open-source platform for biologicalimage analysis, Nat. Methods, 9 (2012), 676.
  • 23. G. Schmid-Schönbein, K. Sung, H. Tözeren, et al., Passive mechanical properties of human leukocytes, Biophys. J., 36 (1981), 243–256.
  • 24. D. Theret, M. Levesque, M. Sato, et al., The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements, J. Biomechan. Eng., 110 (1988), 190–199.
  • 25. R. W. Ogden, Non-linear elastic deformations. Courier Corporation, 1997.
  • 26. T. C. Gasser, R. W. Ogden and G. A. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface, 3 (2005), 15–35.
  • 27. A. Agosti, D. Ambrosi and S. Turzi, Strain energy storage and dissipation rate in active cell mechanics, Phys. Rev. E, 97 (2018), 052410.
  • 28. R. Rivlin and J. Ericksen, Stress-deformation relations for isotropic materials, Arch. Ration. Mech. Anal., 4 (1955), 323–425.
  • 29. A. Spencer, Part iii. theory of invariants, Continuum Physics, 1 (1971), 239–353.
  • 30. D. Ambrosi, S. Pezzuto, D. Riccobelli, et al., Solid tumors are poroelastic solids with a chemomechanical feedback on growth, J. Elasticity, 129 (2017), 107–124.
  • 31. A. V. Melnik, X. Luo and R. W. Ogden, A generalised structure tensor model for the mixed invariant i8, Int. J. Non-Lin. Mech., 107 (2018), 137–148.
  • 32. C. Lim, E. Zhou and S. Quek, Mechanical models for living cells-a review, J. Biomech., 39 (2006), 195–216.


This article has been cited by

  • 1. Wenjun Pu, Jiawen Qiu, Gregory J. Riggins, Marie-Odile Parat, Matrix protease production, epithelial-to-mesenchymal transition marker expression and invasion of glioblastoma cells in response to osmotic or hydrostatic pressure, Scientific Reports, 2020, 10, 1, 10.1038/s41598-020-59462-w

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved