
Mathematical Biosciences and Engineering, 2019, 16(2): 909946. doi: 10.3934/mbe.2019043
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Coexistence and extinction for two competing species in patchy environments
1 Department of Applied Mathematics, National Pingtung University, Pingtung, Taiwan 900
2 Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan 300
Received: , Accepted: , Published:
References
1. E. Braveman and Md. Kamrujjamam, Lotka systems with directed dispersal dynamics: Competition and influence of diffusion strategies, Math. Biosci., 279 (2016), 1–12.
2. R. S. Cantrell and C. Cosner, Spatial ecology via reactiondiffusion equations, Series in Mathematical and Computational Biology, John Wiley and Sons, Chichester, UK, 2003.
3. R. S. Cantrell, C. Cosner and Y. Lou, Multiple reversals of competitive dominance in ecological reserves via external habitat degradation, J. Dyn. Diff. Eqs., 16 (2004), 973–1010.
4. R. S. Cantrell, C. Cosner, D. L. DeAngelis and V. Padron, The ideal free distribution as an evolutionarily stable strategy, J. Biol. Dyn., 1 (2007), 249–271.
5. R. S. Cantrell, C. Cosner and Y. Lou, Evolutionary stability of ideal free dispersal strategies in patchy environments, J. Math. Biol., 65 (2012), 943–965.
6. X. Chen, K. Y. Lam and Y. Lou, Dynamics of a reactiondiffusionadvection model for two competing species, Discret. Contin. Dyn. Syst., 32 (2012), 3841–3859.
7. J. Clobert, E. Danchin, A. A. Dhondt and J. D. Nichols, Dispersal, Oxford University Press, 2001.
8. R. Cressman and V. Krivan, Twopatch population models with adaptive dispersal the effects of varying dispersal speeds, J. Math. Biol., 67 (2013), 329–358.
9. J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: a reaction diffusion model, J. Math. Biol., 37 (1998), 61–83.
10. G. F. Gause, The Struggle for Existence, Williams Wilkins, Baltimore, MD, 1934.
11. S. A. Gourley and Y. Kuang, Twospecies competition with high dispersal: the winning strategy, Math. Biosci. Eng., 2 (2005), 345–362.
12. A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theor. Popul. Biol., 24 (1983), 244–251.
13. X. Q. He and W. M. Ni, The effects of diffusion and spatial variation in LotkaVolterra competitiondi ffusion system I: Heterogeneity vs. homogeneity, J. Differ. Eqs., 254 (2013), 528–546.
14. X. Q. He and W. M. Ni, The effects of diffusion and spatial variation in LotkaVolterra competitiondi ffusion system II: The general case, J. Differ. Eqs., 254 (2013), 4088–4108.
15. X. Q. He and W. M. Ni, Global dynamics of the LotkaVolterra competitiondiffusion system: diffusion and spatial heterogeneity I, Commun. Pure Appl. Math., LXIX (2016), 981–1014.
16. R. D. Holt, Population dynamics in twopatch environments some anomalous consequences of an optimal habitat distribution, Theor. Popul. Biol., 28 (1985), 181–208.
17. S. B. Hsu, H. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc., 348 (1996), 4083–4094.
18. V. Hutson, J. LopezGomez, K. Mischaikow and G. Vickers, Limit behaviour for a competing species problem with diffusion, in Dynamical Systems and Applications, in World Sci. Ser. Appl. Anal. 4, World Scientific, River Edge, NJ, (1995), 343–358.
19. V. Hutson, Y. Lou, K. Mischaikow and P. Poláčik, Competing species near a degenerate limit, SIAM. J. Math. Anal., 35 (2003), 453–491.
20. V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483–517.
21. J. Jiang and X. Liang, Competitive systems with migration and the PoincaréBendixson theorem for a 4dimensional case, Quar. Appl. Math., LXIV (2006), 483–498.
22. Y. Kuang and Y. Takeuchi, Predatorprey dynamics in models of prey dispersal in twopatch environments, Math. Biosci., 120 (1994), 77–98.
23. K. Y. Lam and W. M. Ni, Uniqueness and complete dynamics in heterogeneous competitiondi ffusion systems, SIAM J. Appl. Math., 72 (2012), 1695–1712.
24. K. H. Lin, Y. Lou, C. W. Shih and T. H. Tsai, Global dynamics for twospecies competition in patchy environment, Math. Biosci. Eng., 11 (2014), 947–970.
25. Y. Lou, S. Martinez and P. Polacik, Loops and branches of coexistence states in a LotkaVolterra competition model, J. Differ. Eqs., 230 (2006), 720–742.
26. A. Okubo and S. A. Levin, Diffusion and ecological problems: modern perspectives, second ed., Interdisciplinary Applied Mathematics, 14, Springer, New York, 2001.
27. H. L. Smith, Competing subcommunities of mutualists and a generalized Kamke theorem, SIAM J. Appl. Math., 46 (1986), 856–874.
28. H. L. Smith, Monotone Dynamical Systems: an introduction to the theory of competitive and cooperative systems, Math. Surveys and Monographs, Amer. Math. Soc., 41, 1995.
29. Y. Takeuchi, Diffusionmediated persistence in twospecies competition LotkaVolterra model, Math. Biosci., 95 (1989), 65–83.
30. Y. Takeuchi and Z. Lu, Permanence and global stability for competitive LotkaVolterra diffusion systems, Nonlinear Anal. TMA, 24 (1995), 91–104.
31. Y. Takeuchi, Global dynamical properties of LotkaVolterra systems, River Edge, NJ 07661, World Scientic, 1996.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)