Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Mathematical modeling the dynamics of Clonorchiasis in Guangzhou City of China

1 School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P.R.China
2 College of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, P.R. China

Special Issues: Transmission dynamics in infectious diseases

In this paper, we have set up a mathematical model on the basic life cycle of clonorchiasis to fit the data of human clonorchiasis infection ratios of Guangzhou City of Guangdong Province in China from 2006-2012. By this model, we have proved that the condition of the basic reproductive number $R_0>1$ or $R_0<1$ corresponds the globally asymptotically stable of the endemic equilibrium or the disease-free equilibrium, respectively. The basic reproductive number is estimated as $1.41$ with those optimal parameters. Some efficient strategies to control clonorchiasis are provided by numerical analysis of the mathematical model.
  Figure/Table
  Supplementary
  Article Metrics

References

1. M. Qian, J. Utzinger, J. Keiser and X. Zhou, Clonorchiasis, Lancet, 387 (2016), 800–810.

2. M. Qian, Y. Chen and F. Yan, Time to tackle clonorchiasis in China,Infect. Dis. Poverty, 2 (2013), 1–4.

3. J. McConnell, Remarks on the anatomy and pathological relations of a new species of liver-fluke, Lancet, 106 (1875), 271–274.

4. Y. Yoshida, Clonorchiasis-A historical review of contributions of Japanese parasitologists,Parasitol. Int., 61 (2012), 5–9.

5. J. Keiser and J. Utzinger, Food-borne trematodiases,Clin. Microbiol Rev., 22 (2009), 466–483.

6. B. Sripa, S. Kaewkes, P. M. Intapan, W. Maleewong and P. J. Brindley,Food-borne trematodiases in Southeast Asia: epidemiology, pathology, clinical manifestation and control,Adv. Parasitol., 72 (2010), 305–350.

7. T.Fürst, J. Keiser and J. Utzinger, Global burden of human food-borne trematodiasis: a systematic review and meta-analysis,Lancet Infect. Dis., 12 (2012), 210–221.

8. H.D. Attwood and S. Chou, The longevity of Clonorchis sinensis,Pathology, 10 (1978), 153–156.

9. R. Anderson and R. May,Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, 1991.

10. Y. Dai, S. Gao, Y. Lan, F. Zhang and Y. Luo, Threshold and stability results for clonorchiasis epidemic model,J. Sci. Technol. Environ., 2 (2013), 1–13.

11. S. Gao, Y. Liu, Y. Luo and D. Xie, Control problems of a mathematical model for schistosomiasis transmission dynamics,Nonlinear Dyn., 63 (2011), 503–512.

12. Z. Chen, L. Zou, D. Shen, W. Zhang and S. Ruan, Mathematical modelling and control of schistosomiasis in Hubei Province, China,Acta Tropica., 115 (2010), 119–125.

13. R. Spear, A. Hubbard, S. Liang and E. Seto, Disease transmission models for public health decision making: toward an approach for designing intervention strategies for schistosomiasis japonica,Environ. Health Perspect., 110 (2002), 907–915.

14. Z. Deng and Y. Fang, Epidemic situation and prevention and control strategy of clonorchiasis in Guangdong Province, China,Chin. J. Schisto. Control (In Chinese), 28 (2016), 229–233.

15. C. Castillochavez, Z. Feng and D. Xu, A schistosomiasis model with mating structure and time delay,Math. Biosci., 211 (2008), 333–341.

16. T. D. Mangal, S. Paterson and A. Fenton, Predicting the impact of long-term temperature changes on the epidemiology and control of schistosomiasis: A mechanistic model,PLoS One, 3 (2008), e1438. doi:10.1371/journal.pone.0001438.

17. Y. Wu, M. Li and G. Sun, Asymptotic analysis of schistosomiasis persistence in models with general functions,J. Franklin I., 353 (2016), 4772–4784.

18. O. Diekmann, J. Heesterbeek and J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations,J. Math. Biol., 28 (1990), 365.

19. O. Diekmann, J. Heesterbeek and M. Roberts, The construction of nextgeneration matrices for compartmental epidemic models,J. R. Soc. Interface, 7 (2010), 873–885.

20. P. Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,Math. Biosci., 180 (2002), 29–48.

21. A. Berman and R. J. Plemmons,Nonnegative Matrces in Mathematical Sciences, Soci. Indu. Appl. Math., Philadephia, 1994.

22. J. Lasalle,The Stability of Dynamical Systems, Soci. Indu. Appl. Math., Philadephia, 1976.

23. T. Li, Z. Yang and M. Wang, Correlation between clonorchiasis incidences and climatic factors in Guangzhou, China,Parasit. Vectors, 7 (2014), 29. doi:10.1186/1756-3305-7-29.

24. D. Goldberg,Genetic Algorithms in Search, Optimization, and Machine Learning, Addison- Wesley, New York, 1989.

25. X. Zhang, M. Jaramillo, S. Singh, P. Kumta and I. Banejee, Analysis of regulatory network involved in mechanical induction of embryonic stem cell differentiation,PLoS One, 7 (2012), e35700. doi:10.137/journalpone0035700.

26. M. Qian, Y. Chen, Y. Fang, L. Xu, T. Zhu and T. Tan, C. Zhou, G. Wang, T. Jia, G. Yang and X. Zhou, Disability weight of Clonorchis sinensis infection: captured from community study and model simulation,Plos Negl. Trop. Dis., 5 (2011), e1377. doi:10.1371/journal.pntd.0001377.

27. X. Wang, W. Chen, X. Lv, Y. Tian, J. Men, X. Zhang, H. Lei, C. Zhou, F. Lu, C. Liang, X. Hu, J. Xu, Z. Wu, X. Li and X. Yu, Identification and characterization of paramyosin from cyst wall of metacercariae implicated protective efficacy against Clonorchis sinensis infection,PLoS One, 7 (2012), e33703. doi:10.1371/journal.pone.0033703.

28. Z. Tang, Y. Huang and X. Yu, Current status and perspectives of Clonorchis sinensis and clonorchiasis: epidemiolgy, pathegenesis, omics, prevention and control,Infect. Dis. Poverty, 5 (2016), 71. doi: 10.11186/s40249-016-0166-1.

29. W. Wu, X. Qian, Y. Huang and Q. Hong, A review of the control of clonorchiasis sinensis and Taenia solium taenia/cycticercosis in China, Parasitol. Res., 111 (2012), 1879–1884.

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved