Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Mathematical modeling the dynamics of Clonorchiasis in Guangzhou City of China

1 School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P.R.China
2 College of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, P.R. China

Special Issues: Transmission dynamics in infectious diseases

In this paper, we have set up a mathematical model on the basic life cycle of clonorchiasis to fit the data of human clonorchiasis infection ratios of Guangzhou City of Guangdong Province in China from 2006-2012. By this model, we have proved that the condition of the basic reproductive number $R_0>1$ or $R_0<1$ corresponds the globally asymptotically stable of the endemic equilibrium or the disease-free equilibrium, respectively. The basic reproductive number is estimated as $1.41$ with those optimal parameters. Some efficient strategies to control clonorchiasis are provided by numerical analysis of the mathematical model.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Clonorchiasis; global asymptotical stability; basic reproductive number

Citation: Ruixia Yuan, Shujing Gao, Jicai Huang, Xinan Zhang. Mathematical modeling the dynamics of Clonorchiasis in Guangzhou City of China. Mathematical Biosciences and Engineering, 2019, 16(2): 881-897. doi: 10.3934/mbe.2019041

References

  • 1. M. Qian, J. Utzinger, J. Keiser and X. Zhou, Clonorchiasis, Lancet, 387 (2016), 800–810.
  • 2. M. Qian, Y. Chen and F. Yan, Time to tackle clonorchiasis in China,Infect. Dis. Poverty, 2 (2013), 1–4.
  • 3. J. McConnell, Remarks on the anatomy and pathological relations of a new species of liver-fluke, Lancet, 106 (1875), 271–274.
  • 4. Y. Yoshida, Clonorchiasis-A historical review of contributions of Japanese parasitologists,Parasitol. Int., 61 (2012), 5–9.
  • 5. J. Keiser and J. Utzinger, Food-borne trematodiases,Clin. Microbiol Rev., 22 (2009), 466–483.
  • 6. B. Sripa, S. Kaewkes, P. M. Intapan, W. Maleewong and P. J. Brindley,Food-borne trematodiases in Southeast Asia: epidemiology, pathology, clinical manifestation and control,Adv. Parasitol., 72 (2010), 305–350.
  • 7. T.Fürst, J. Keiser and J. Utzinger, Global burden of human food-borne trematodiasis: a systematic review and meta-analysis,Lancet Infect. Dis., 12 (2012), 210–221.
  • 8. H.D. Attwood and S. Chou, The longevity of Clonorchis sinensis,Pathology, 10 (1978), 153–156.
  • 9. R. Anderson and R. May,Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, 1991.
  • 10. Y. Dai, S. Gao, Y. Lan, F. Zhang and Y. Luo, Threshold and stability results for clonorchiasis epidemic model,J. Sci. Technol. Environ., 2 (2013), 1–13.
  • 11. S. Gao, Y. Liu, Y. Luo and D. Xie, Control problems of a mathematical model for schistosomiasis transmission dynamics,Nonlinear Dyn., 63 (2011), 503–512.
  • 12. Z. Chen, L. Zou, D. Shen, W. Zhang and S. Ruan, Mathematical modelling and control of schistosomiasis in Hubei Province, China,Acta Tropica., 115 (2010), 119–125.
  • 13. R. Spear, A. Hubbard, S. Liang and E. Seto, Disease transmission models for public health decision making: toward an approach for designing intervention strategies for schistosomiasis japonica,Environ. Health Perspect., 110 (2002), 907–915.
  • 14. Z. Deng and Y. Fang, Epidemic situation and prevention and control strategy of clonorchiasis in Guangdong Province, China,Chin. J. Schisto. Control (In Chinese), 28 (2016), 229–233.
  • 15. C. Castillochavez, Z. Feng and D. Xu, A schistosomiasis model with mating structure and time delay,Math. Biosci., 211 (2008), 333–341.
  • 16. T. D. Mangal, S. Paterson and A. Fenton, Predicting the impact of long-term temperature changes on the epidemiology and control of schistosomiasis: A mechanistic model,PLoS One, 3 (2008), e1438. doi:10.1371/journal.pone.0001438.
  • 17. Y. Wu, M. Li and G. Sun, Asymptotic analysis of schistosomiasis persistence in models with general functions,J. Franklin I., 353 (2016), 4772–4784.
  • 18. O. Diekmann, J. Heesterbeek and J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations,J. Math. Biol., 28 (1990), 365.
  • 19. O. Diekmann, J. Heesterbeek and M. Roberts, The construction of nextgeneration matrices for compartmental epidemic models,J. R. Soc. Interface, 7 (2010), 873–885.
  • 20. P. Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,Math. Biosci., 180 (2002), 29–48.
  • 21. A. Berman and R. J. Plemmons,Nonnegative Matrces in Mathematical Sciences, Soci. Indu. Appl. Math., Philadephia, 1994.
  • 22. J. Lasalle,The Stability of Dynamical Systems, Soci. Indu. Appl. Math., Philadephia, 1976.
  • 23. T. Li, Z. Yang and M. Wang, Correlation between clonorchiasis incidences and climatic factors in Guangzhou, China,Parasit. Vectors, 7 (2014), 29. doi:10.1186/1756-3305-7-29.
  • 24. D. Goldberg,Genetic Algorithms in Search, Optimization, and Machine Learning, Addison- Wesley, New York, 1989.
  • 25. X. Zhang, M. Jaramillo, S. Singh, P. Kumta and I. Banejee, Analysis of regulatory network involved in mechanical induction of embryonic stem cell differentiation,PLoS One, 7 (2012), e35700. doi:10.137/journalpone0035700.
  • 26. M. Qian, Y. Chen, Y. Fang, L. Xu, T. Zhu and T. Tan, C. Zhou, G. Wang, T. Jia, G. Yang and X. Zhou, Disability weight of Clonorchis sinensis infection: captured from community study and model simulation,Plos Negl. Trop. Dis., 5 (2011), e1377. doi:10.1371/journal.pntd.0001377.
  • 27. X. Wang, W. Chen, X. Lv, Y. Tian, J. Men, X. Zhang, H. Lei, C. Zhou, F. Lu, C. Liang, X. Hu, J. Xu, Z. Wu, X. Li and X. Yu, Identification and characterization of paramyosin from cyst wall of metacercariae implicated protective efficacy against Clonorchis sinensis infection,PLoS One, 7 (2012), e33703. doi:10.1371/journal.pone.0033703.
  • 28. Z. Tang, Y. Huang and X. Yu, Current status and perspectives of Clonorchis sinensis and clonorchiasis: epidemiolgy, pathegenesis, omics, prevention and control,Infect. Dis. Poverty, 5 (2016), 71. doi: 10.11186/s40249-016-0166-1.
  • 29. W. Wu, X. Qian, Y. Huang and Q. Hong, A review of the control of clonorchiasis sinensis and Taenia solium taenia/cycticercosis in China, Parasitol. Res., 111 (2012), 1879–1884.

 

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved