Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

EEG in neonates: Forward modeling and sensitivity analysis with respect to variations of the conductivity

1. GRAMFC INSERM U1105, Department of Medicine, Amiens University Hospital, 80000 Amiens, France
2. Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, Université de Picardie Jules Verne, 80039 Amiens, France
3. Laboratoire de Mathématiques Appliquées de Compiègne, Sorbonne Université, Université de Technologie de Compiègne, 60205 Compiègne, France
4. Laboratoire de Mathématiques de Reims, EA4535, Université de Reims Champagne-Ardenne, 51687 Reims cedex 2, France

The paper is devoted to the analysis of electroencephalography (EEG) in neonates. The goal is to investigate the impact of fontanels on EEG measurements, i.e. on the values of the electric potential on the scalp. In order to answer this clinical issue, a complete mathematical study (modeling, existence and uniqueness result, realistic simulations) is carried out. A model for the forward problem in EEG source localization is proposed. The model is able to take into account the presence and ossification process of fontanels which are characterized by a variable conductivity. From a mathematical point of view, the model consists in solving an elliptic problem with a singular source term in an inhomogeneous medium. A subtraction approach is used to deal with the singularity in the source term, and existence and uniqueness results are proved for the continuous problem. Discretization is performed with 3D Finite Elements of type P1 and error estimates are proved in the energy norm ($H^1$-norm). Numerical simulations for a three-layer spherical model as well as for a realistic neonatal head model including or not the fontanels have been obtained and corroborate the theoretical results. A mathematical tool related to the concept of Gâteau derivatives is introduced which is able to measure the sensitivity of the electric potential with respect to small variations in the fontanel conductivity. This study attests that the presence of fontanels in neonates does have an impact on EEG measurements.

  Article Metrics

Keywords Electroencephalography in neonates; dipole sources; finite elements; sensitivity analysis; simulations for realistic head models

Citation: Hamed Azizollahi, Marion Darbas, Mohamadou M. Diallo, Abdellatif El Badia, Stephanie Lohrengel. EEG in neonates: Forward modeling and sensitivity analysis with respect to variations of the conductivity. Mathematical Biosciences and Engineering, 2018, 15(4): 905-932. doi: 10.3934/mbe.2018041


  • [1] Z. Akalin Acar,S. Makeig, Effects of Forward Model Errors on EEG Source Localization, Brain Topogrography, 26 (2013): 378-396.
  • [2] A. Alonso-Rodriguez,J. Camano,R. Rodriguez,A. Valli, Assessment of two approximation methods for the inverse problem of electroencephalography, Int. J. of Numerical Analysis and Modeling, 13 (2016): 587-609.
  • [3] H. Azizollahi,A. Aarabi,F. Wallois, Effects of uncertainty in head tissue conductivity and complexity on EEG forward modeling in neonates, Hum. Brain Ma, 37 (2016): 3604-3622.
  • [4] H. T. Banks,D. Rubio,N. Saintier, Optimal design for parameter estimation in EEG problems in a 3D multilayered domain, Mathematical Biosciences and Engineering, 12 (2015): 739-760.
  • [5] M. Bauer,S. Pursiainen,J. Vorwerk,H. Köstler,C. H. Wolters, Comparison Study for Whitney (Raviart-Thomas)-Type Source Models in Finite-Element-Method-Based EEG Forward Modeling, IEEE Trans. Biomed. Eng., 62 (2015): 2648-2656.
  • [6] J. Borggaard and V. L. Nunes, Fréchet Sensitivity Analysis for Partial Differential Equations with Distributed Parameters, American Control Conference, San Francisco, 2011.
  • [7] H. Brezis, Functional Analysis, Sobolev Spaces And Partial Differential Equations, Universitext. Springer, New York, 2011.
  • [8] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, New York, 1978.
  • [9] M. Clerc,J. Kybic, Cortical mapping by Laplace-Cauchy transmission using a boundary element method, Journal on Inverse Problems, 23 (2007): 2589-2601.
  • [10] M. Clerc, J. Leblond, J. -P. Marmorat and T. Papadopoulo, Source localization using rational approximation on plane sections, Inverse Problems, 28 (2012), 055018, 24 pp.
  • [11] M. Darbas, M. M. Diallo, A. El Badia and S. Lohrengel, An inverse dipole source problem in inhomogeneous media: application to the EEG source localization in neonates, in preparation.
  • [12] A. El Badia,T. Ha Duong, An inverse source problem in potential analysis, Inverse Problems, 16 (2000): 651-663.
  • [13] A. El Badia,M. Farah, Identification of dipole sources in an elliptic equation from boundary measurements, J. Inv. Ill-Posed Problems, 14 (2006): 331-353.
  • [14] A. El Badia and M. Farah, A stable recovering of dipole sources from partial boundary measurements, Inverse Problems, 26 (2010), 115006, 24pp.
  • [15] Q. Fang and D. A. Boas, Tetrahedral mesh generation from volumetric binary and grayscale images, EEE International Symposium on Biomedical Imaging: From Nano to Macro, (2009), SBI? 09. Boston, Massachusetts, USA, 1142–1145.
  • [16] M. Farah, Problémes Inverses de Sources et Lien avec l'Electro-encéphalo-graphie, Thése de doctorat, Université de Technologie de Compiégne, 2007.
  • [17] O. Faugeras, F. Clément, R. Deriche, R. Keriven, T. Papadopoulo, J. Roberts, T. Viéville, F. Devernay, J. Gomes, G. Hermosillo, P. Kornprobst and D. Lingrand, The Inverse EEG and MEG Problems: The Adjoint State Approach I: The Continuous Case ,Rapport de recherche, 1999.
  • [18] P. Gargiulo,P. Belfiore,E. A. Friogeirsson,S. Vanhalato,C. Ramon, The effect of fontanel on scalp EEG potentials in the neonate, Clin. Neurophysiol, 126 (2015): 1703-1710.
  • [19] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order Springer, Berlin, 1977.
  • [20] R. Grech, T. Cassar, J. Muscat, K. P. Camilleri, S. G. Fabri, M. Zervakis, P. Xanthopoulos, V. Sakkalis and B. Vanrumste, Review on solving the inverse problem in EEG source analysis J. NeuorEng. Rehabil. , 5 (2008).
  • [21] H. Hallez, B. Vanrumste, R. Grech, J. Muscat, W. De Clercq, A. Vergult, Y. d'Asseler, K. P. Camilleri, S. G. Fabri, S. Van Huffel and I. Lemahieu, Review on solving the forward problem in EEG source analysis J. NeuorEng. Rehabil., 4 (2007).
  • [22] M. Hämäläinen,R. Hari,J. Ilmoniemi,J. Knuutila,O. V. Lounasmaa, Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain, Rev. Mod. Phys., 65 (1993): 413-497.
  • [23] F. Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuka, FreeFem++ Manual, 2014.
  • [24] E. Hernández,R. Rodríguez, Finite element Approximation of Spectral Problems with Neumann Boundary Conditions on curved domains, Math. Comp., 72 (2002): 1099-1115.
  • [25] R. Kress, Linear Integral Equations, Second edition, Applied Mathematical Sciences 82, Spinger-Verlag, 1999.
  • [26] J. Kybic,M. Clerc,T. Abboud,O. Faugeras,R. Keriven,T. Papadopoulo, A common formalism for the integral formulations of the forward EEG Problem, IEEE Transactions on Medical Imaging, 24 (2005): 12-28.
  • [27] J. Kybic,M. Clerc,O. Faugeras,R. Keriven,T. Papadopoulo, Fast multipole acceleration of the MEG/EEG boundary element method, Physics in Medicine and Biology, 50 (2005): 4695-4710.
  • [28] J. Kybic,M. Clerc,T. Abboud,O. Faugeras,R. Keriven,T. Papadopoulo, Generalized head models for MEG/EEG: Boundary element method beyond nested volumes, Phys. Med. Biol., 51 (2006): 1333-1346.
  • [29] J. Leblond, Identifiability properties for inverse problems in EEG data processing and medical engineering, with observability and optimization issues, Acta Applicandae Mathematicae, 135 (2015): 175-190.
  • [30] S. Lew,D. D. Silva,M. Choe,P. Ellen Grant,Y. Okada,C. H. Wolters,M. S. Hämäläinen, Effects of sutures and fontanels on MEG and EEG source analysis in a realistic infant head model, Neuroimage, 76 (2013): 282-293.
  • [31] T. Medani,D. Lautru,D. Schwartz,Z. Ren,G. Sou, FEM method for the EEG forward problem and improvement based on modification of the saint venant's method, Progress In Electromagnetic Research, 153 (2015): 11-22.
  • [32] J. C. de Munck,M. J. Peters, A fast method to compute the potential in the multisphere model, IEEE Trans. Biomed. Eng., 40 (1993): 1166-1174.
  • [33] Odabaee,A. Tokariev,S. Layeghy,M. Mesbah,P. B. Colditz,C. Ramon,S. Vanhatalo, Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models, NeuroImage, 96 (2014): 73-80.
  • [34] P. A. Raviart and J. M. Thomas, Introduction á l'Analyse Numérique des Equations aux Dérivées Partielles, Masson, Paris, 1983.
  • [35] N. Roche-Labarbe,A. Aarabi,G. Kongolo,C. Gondry-Jouet,M. Dümpelmann,R. Grebe,F. Wallois, High-resolution electroencephalography and source localization in neonates, Human Brain Mapping, 29 (2008): 167-76.
  • [36] C. Rorden,L. Bonilha,J. Fridriksson,B. Bender,H. O. Karnath, Age-specific CT and MRI templates for spatial normalization, NeuroImage, 61 (2012): 957-965.
  • [37] M. Schneider, A multistage process for computing virtual dipole sources of EEG discharges from surface information, IEEE Trans. on Biomed. Eng., 19, 1-19.
  • [38] M. I. Troparevsky, D. Rubio and N. Saintier, Sensitivity analysis for the EEG forward problem Frontiers in Computational Neuroscience, 4 (2010), p138.
  • [39] J. Vorwerk,J. H. Cho,S. Rampp,H. Hamer,T. T. Knösche,C. H. Wolters, A guideline for head volume conductor modeling in EEG and MEG, NeuroImage, 100 (2014): 590-607.
  • [40] C. H. Wolters,H. Köstler,C. Möller,J. Härdtlein,L. Grasedyck,W. Hackbusch, Numerical mathematics of the subtraction approach for the modeling of a current dipole in EEG source reconstruction using finite element head models, SIAM J. Sci. Comput., 30 (2007): 24-45.
  • [41] C. H. Wolters,H. Köstler,C. Möller,J. Härdtlein,A. Anwander, Numerical approaches for dipole modeling in finite element method based source analysis, Int. Congress Ser., 1300 (2007): 189-192.
  • [42] Z. Zhang, A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres, Phys. Med. Biol., 40 (1995): 335-349.


This article has been cited by

  • 1. Marion Darbas, Stephanie Lohrengel, Review on Mathematical Modelling of Electroencephalography (EEG), Jahresbericht der Deutschen Mathematiker-Vereinigung, 2018, 10.1365/s13291-018-0183-z
  • 2. Marion Darbas, Mohamadou Malal Diallo, Abdellatif El Badia, Stephanie Lohrengel, An inverse dipole source problem in inhomogeneous media: Application to the EEG source localization in neonates, Journal of Inverse and Ill-posed Problems, 2019, 0, 0, 10.1515/jiip-2017-0120
  • 3. Marion Darbas, Jérémy Heleine, Stephanie Lohrengel, Sensitivity analysis for 3D Maxwell's equations and its use in the resolution of an inverse medium problem at fixed frequency, Inverse Problems in Science and Engineering, 2019, 1, 10.1080/17415977.2019.1588896
  • 4. Marios Antonakakis, Sophie Schrader, Andreas Wollbrink, Robert Oostenveld, Stefan Rampp, Jens Haueisen, Carsten H. Wolters, The effect of stimulation type, head modeling, and combined EEG and MEG on the source reconstruction of the somatosensory P20/N20 component, Human Brain Mapping, 2019, 10.1002/hbm.24754
  • 5. Valdas Noreika, Stanimira Georgieva, Sam Wass, Victoria Leong, 14 challenges and their solutions for conducting social neuroscience and longitudinal EEG research with infants, Infant Behavior and Development, 2020, 58, 101393, 10.1016/j.infbeh.2019.101393

Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved