
Mathematical Biosciences and Engineering, 2017, 14(4): 10551069. doi: 10.3934/mbe.2017055
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A surface model of nonlinear, nonsteadystate phloem transport
1. Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, Université de Picardie Jules Verne, 80069 Amiens, France
2. SCION, New Zealand Forest Research Institute, Private bag 3020, Rotorua 3046, New Zealand
Received: , Accepted: , Published:
Phloem transport is the process by which carbohydrates produced by photosynthesis in the leaves get distributed in a plant. According to Münch, the osmotically generated hydrostatic phloem pressure is the force driving the longdistance transport of photoassimilates. Following Thompson and Holbrook[
References
[1] P. Cabrita,M. Thorpe,G. Huber, Hydrodynamics of steady state phloem transport with radial leakage of solute, Frontiers Plant Sci., 4 (2013): 531543.
[2] A. L. Christy,J. M. Ferrier, A mathematical treatment of Münch's pressureflow hypothesis of phloem translocation, Plant Physio., 52 (1973): 531538.
[3] T. K. Dey,J. A. Levine, Delaunay meshing of isosurfaces, Visual Comput., 24 (2008): 411422.
[4] J. M. Ferrier, Further theoretical analysis of concentrationpressureflux waves in phloem transport systems, Can. J. Bot., 56 (1978): 10861090.
[5] F. G. Feugier,A. Satake, Dynamical feedback between circadian clock and sucrose availability explains adaptive response of starch metabolism to various photoperiods, Frontiers Plant Sci., 305 (2013): 111.
[6] D. B. Fisher,C. CashClark, Sieve tube unloading and postphloemtransport of fluorescent tracers and proteins injected into sieve tubes via severed aphid stylets, Plant Physio., 123 (2000): 125137.
[7] J. D. Goeschl,C. E. Magnuson, Physiological implications of the MünchHorwitz theory of phloem transport: effect of loading rates, Plant Cell Env., 9 (1986): 95102.
[8] J. Gričar,L. Krže,K. Čufar, Number of cells in xylem, phloem and dormant cambium in silver fir (Abies alba), in trees of different vitality, IAWA Journal, 30 (2009): 121133.
[9] J. Hansen,E. Beck, The fate and path of assimilation products in the stem of 8yearold {Scots} pine (Pinus sylvestris {L}.) trees, Trees, 4 (1990): 1621.
[10] F. Hecht, New Developments in Freefem++, J. Num. Math., 20 (2012): 251265.
[11] L. Horwitz, Some simplified mathematical treatments of translocation in plants, Plant Physio., 33 (1958): 8193.
[12] T. Hölttä,M. Mencuccini,E. Nikinmaa, Linking phloem function to structure: Analysis with a coupled xylemphloem transport model, J. Theo. Bio., 259 (2009): 325337.
[13] T. Hölttä,T. Vesala,S. Sevanto,M. Perämäki,E. Nikinmaa, Modeling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis, Trees, 20 (2006): 6778.
[14] W. Hundsdorfer and J. G. Verwer, Numerical Solution of TimeDependent AdvectionDiffusionReaction Equations Springer Series in Comput. Math., 33, Springer, 2003.
[15] K. H. Jensen,J. Lee,T. Bohr,H. Bruus,N. M. Holbrook,M. A. Zwieniecki, Optimality of the Münch mechanism for translocation of sugars in plants, J. R. Soc. Interface, 8 (2011): 11551165.
[16] A. Kagawa,A. Sugimoto,T. C. Maximov, CO 2 pulselabelling of photoassimilates reveals carbon allocation within and between tree rings, Plant Cell Env., 29 (2006): 15711584.
[17] E. M. Kramer, Wood grain pattern formation: A brief review, J. Plant Growth Reg., 25 (2006): 290301.
[18] H.O. Kreiss and J. Lorenz, InitialBoundary Value Problems and the NavierStokes Equations Classics in Applied Mathematics, SIAM, 2004.
[19] A. Lacointe,P. E. H. Minchin, Modelling phloem and xylem transport within a complex architecture, Funct. Plant Bio., 35 (2008): 772780.
[20] A. Lang, A model of mass flow in the phloem, Funct. Plant Bio., 5 (1978): 535546.
[21] P. E. H. Minchin,M. R. Thorpe,J. F. Farrar, A simple mechanistic model of phloem transport which explains sink priority, Journal of Experimental Botany, 44 (1993): 947955.
[22] E. Münch, Die Stoffbewegungen in der Pflanze Jena, Gustav Fischer, 1930.
[23] K. A. Nagel,B. Kastenholz,S. Jahnke,D. van Dusschoten,T. Aach,M. Mühlich,D. Truhn,H. Scharr,S. Terjung,A. Walter,U. Schurr, Temperature responses of roots: Impact on growth, root system architecture and implications for phenotyping, Funct. Plant Bio., 36 (2009): 947959.
[24] E. M. Ouhabaz, Analysis of Heat Equations on Domains London Math. Soc. Monographs Series, Princeton University Press, 2005.
[25] S. Payvandi,K. R. Daly,K. C. Zygalakis,T. Roose, Mathematical modelling of the phloem: The importance of diffusion on sugar transport at osmotic equilibrium, Bull. Math Biol., 76 (2014): 28342865.
[26] S. Pfautsch,J. Renard,M. G. Tjoelker,A. Salih, Phloem as capacitor: Radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma, Plant Physio., 167 (2015): 963971.
[27] O. Pironneau,M. Tabata, Stability and convergence of a Galerkincharacteristics finite element scheme of lumped mass type, Int. J. Num. Meth. Fluids, 64 (2000): 12401253.
[28] G. E. Phillips,J. Bodig,J. Goodman, Flow grain analogy, Wood Sci., 14 (1981): 5564.
[29] R. J. Phillips,S. R. Dungan, Asymptotic analysis of flow in sieve tubes with semipermeable walls, J. Theor. Biol., 162 (1993): 465485.
[30] D. Rotsch, T. Brossard, S. Bihmidine, W. Ying, V. Gaddam, M. Harmata, J. D. Robertson, M. Swyers, S. S. Jurisson and D. M. Braun, Radiosynthesis of 6'Deoxy6'[18F]Fluorosucrose via automated synthesis and its utility to study in vivo sucrose transport in maize (Zea mays) leaves PLoS ONE 10 (2015), e0128989.
[31] D. Sellier,J. J. Harrington, Phloem transport in trees: A generic surface model, Eco. Mod., 290 (2014): 102109.
[32] D. Sellier,M. J. Plank,J. J. Harrington, A mathematical framework for modelling cambial surface evolution using a level set method, Annals Bot., 108 (2011): 10011011.
[33] R. Spicer, Symplasmic networks in secondary vascular tissues: Parenchyma distribution and activity supporting longdistance transport, J. Exp. Bot., 65 (2014): 18291848.
[34] J. F. Swindells, C. F. Snyder, R. C. Hardy and P. E. Golden, Viscosities of sucrose solutions at various temperatures: Tables of recalculated values, NBS Circular 440 (1958).
[35] M. V. Thompson,N. M. Holbrook, Application of a singlesolute nonsteadystate phloem model to the study of longdistance assimilate transport, J. Theo. Bio., 220 (2003): 419455.
Copyright Info: © 2017, Youcef Mammeri, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)