Citation: Yanxia Dang, Zhipeng Qiu, Xuezhi Li. Competitive exclusion in an infection-age structured vector-host epidemic model[J]. Mathematical Biosciences and Engineering, 2017, 14(4): 901-931. doi: 10.3934/mbe.2017048
[1] | [ F. Brauer,Z. S. Shuai,P. V. D. Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Enger., 10 (2013): 1335-1349. |
[2] | [ H. J. Bremermann,H. R. Thieme, A competitive exclusion principle for pathogen virulence, J. Math. Biol, 27 (1989): 179-190. |
[3] | [ L. M. Cai,M. Martcheva,X. Z. Li, Competitive exclusion in a vector-host epidemic model with distributed delay, J. Biol. Dynamics, 7 (2013): 47-67. |
[4] | [ Y. Dang, Z. Qiu, X. Li and M. Martcheva, Global dynamics of a vector-host epidemic model with age of infection, submitted, 2015. |
[5] | [ L. Esteva,A. B. Gumel,C. Vargas-de Leon, Qualitative study of transmission dynamics of drug-resistant malaria, Math. Comput. Modelling, 50 (2009): 611-630. |
[6] | [ Z. Feng,J. X. Velasco-Hernandez, Competitive exclusion in a vector host model for the dengue fever, J. Math. Biol, 35 (1997): 523-544. |
[7] | [ S. M. Garba,A. B. Gumel, Effect of cross-immunity on the transmission dynamics of two srains of dengue, J. Comput. Math, 87 (2010): 2361-2384. |
[8] | [ J. K. Hale, Asymptotic Behavior of Dissipative Systems AMS, Providence, 1988. |
[9] | [ W. O. Kermack,A. G. McKendrick, in Contributions to the Mathematical Theory of Epidemics, Contributions to the Mathematical Theory of Epidemics, Royal Society Lond, 115 (1927): 700-721. |
[10] | [ A. L. Lloyd, Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods, Royal Society Lond B, 268 (2001): 985-993. |
[11] | [ A. L. Lloyd, Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics, Theor. Popul. Biol., 60 (2001): 59-71. |
[12] | [ P. Magal,C. C. McCluskey,G. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010): 1109-1140. |
[13] | [ M. Martcheva,X. Z. Li, Competitive exclusion in an infection-age structured model with environmental transmission, J. Math. Anal. Appl, 408 (2013): 225-246. |
[14] | [ M. Martcheva,H. R. Thieme, Progression age enhanced backward bifurcation in an epidemic model with super-infection, J. Math. Biol, 46 (2003): 385-424. |
[15] | [ M. Martcheva,M. Iannelli,X. Z. Li, Subthreshold coexistence of strains: The impact of vaccination and mutation, Math. Biosci. Eng., 4 (2007): 287-317. |
[16] | [ D. L. Qian, X. Z. Li and M. Ghosh, Coexistence of the strains induced by mutation Int. J. Biomath. 5 (2012), 1260016, 25 pp. |
[17] | [ Z. P. Qiu,Q. K. Kong,X. Z. Li,M. M. Martcheva, The vector host epidemic model with multiple strains in a patchy environment, J. Math. Anal. Appl., 405 (2013): 12-36. |
[18] | [ H. R. Thieme,C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics if HIV/AIDs?, SIAM J. Appl. Math., 53 (1993): 1447-1479. |
[19] | [ H. R. Thieme, Uniform persistence and permanence for non-autonomous semiflows in population biology, Math. Biosci, 166 (2000): 173-201. |
[20] | [ J. X. Yang,Z. P. Qiu,X. Z. Li, Global stability of an age-structured cholera model, Math. Biosci. Enger., 11 (2014): 641-665. |
[21] | [ K. Yosida, Functional Analysis Springer-Verlag, Berlin, Heidelberg, New York, 1968. |