**Export file:**

**Format**

- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text

**Content**

- Citation Only
- Citation and Abstract

A chaotic bursting-spiking transition in a pancreatic beta-cells system: observation of an interior glucose-induced crisis

^{setArticleTag('','1,2','1','jduarte@adm.isel.pt');},^{setArticleTag('','1','','');},^{setArticleTag('','2','','');}

1. Instituto Superior de Engenharia de Lisboa - ISEL, Department of Mathematics, Rua Conselheiro Emídio Navarro 1, 1949-014 Lisboa, Portugal

2. Center for Mathematical Analysis, Geometry and Dynamical Systems, Mathematics Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Received: , Published:

Nonlinear systems are commonly able to display abrupt qualitative changes (or transitions) in the dynamics. A particular type of these transitions occurs when the size of a chaotic attractor suddenly changes. In this article, we present such a transition through the observation of a chaotic interior crisis in the Deng bursting-spiking model for the glucose-induced electrical activity of pancreatic $β $-cells. To this chaos-chaos transition corresponds precisely the change between the bursting and spiking dynamics, which are central and key dynamical regimes that the Deng model is able to perform. We provide a description of the crisis mechanism at the bursting-spiking transition point in terms of time series variations and based on certain amplitudes of invariant intervals associated with return maps. Using symbolic dynamics, we are able to accurately compute the points of a curve representing the transition between the bursting and spiking regimes in a biophysical meaningfully parameter space. The analysis of the chaotic interior crisis is complemented by means of topological invariants with the computation of the topological entropy and the maximum Lyapunov exponent. Considering very recent developments in the literature, we construct analytical solutions triggering the bursting-spiking transition in the Deng model. This study provides an illustration of how an integrated approach, involving numerical evidences and theoretical reasoning within the theory of dynamical systems, can directly enhance our understanding of biophysically motivated models.

# References

[1] J. Aguirre, E. Mosekilde and M. A. F. Sanjuán, Analysis of the noise-induced bursting-spiking transition in a pancreatic $β $-cell model ,*Pysical Review E*, **69** (2004), 041910, 16pp.

[2] I. Atwater, C. M. Dawson, A. Scott, G. Eddlestone and E. Rojas,
*The Nature of the Oscillatory Behaviour in Electrical Activity from Pancreatic Beta-cell* ,Georg Thieme, New York, 1980.

[3] C. A. S. Batista, A. M. Batista, J. A. C. de Pontes, R. L. Viana and S. R. Lopes, Chaotic phase synchronization in scale-free networks of bursting neurons,*Phys. Rev. E*, **76** (2007), 016218, 10pp.

[4] C. A. S. Batista, E. L. Lameu, A. M. Batista, S. R. Lopes, T. Pereira, G. Zamora-López, J. Kurths and R. L. Viana. Phase synchronization of bursting neurons in clustered small-world networks ,*Phys. Rev. E* ,**86** (2012), 016211.

[5] R. Bertram,A. Sherman, Dynamical complexity and temporal plasticity in pancreatic beta cells, J. Biosci., 25 (2000): 197-209.

[6] T. R. Chay,J. Keizer, Minimal model for membrane oscillations in the pancreatic beta-cel, Biophys. J., 42 (1983): 181-190.

[7] T. R. Chay, Chaos in a three-variable model of an excitable cell, Physica D, 16 (1984): 233-242.

[8] L. O. Chua,M. Komuro,T. Matsumoto, The double scroll family, IEEE Trans. Circuits Syst., 32 (1985): 797-818.

[9] B. Deng, A mathematical model that mimics the bursting oscillations in pancreatic $β $-cells, Math. Biosciences, 119 (1994): 241-250.

[10] B. Deng, Glucose-induced period-doubling cascade in the electrical activity of pancreatic $β $-cells, J. Math. Biol., 38 (1999): 21-78.

[11] J. Duarte,C. Januário,N. Martins, Topological entropy and the controlled effect of glucose in the electrical activity of pancreatic beta-cells, Physica D, 238 (2009): 2129-2137.

[12] J. Duarte,C. Januário,N. Martins, Explicit series solution for a glucose-induced electrical activity model of pancreatic cells, Chaos, Solitons & Fractals, 76 (2015): 1-9.

[13] J. Duarte, C. Januário, C. Rodrigues and J. Sardany és, Topological complexity and predictability in the dynamics of a tumor growth model with Shilnikov's chaos ,*Int. J Bifurcation Chaos*, **23** (2013), 1350124, 12pp.

[14] H. Fallah, Symmetric fold / super-Hopf bursting, chaos and mixed-mode oscillations in Pernarowski model Int.,*J Bifurcation Chaos*, **26** (2016), 1630022, 14pp.

[15] Y.-S. Fan,T. R. Chay, Crisis Transitions in excitable cell models, Chaos, Solitons & Fractals, 3 (1993): 603-615.

[16] Y.-S. Fan,T. R. Chay, Crisis and topological entropy, Physical Review E, 51 (1995): 1012-1019.

[17] L. E. Fridlyand,N. Tamarina,L. H. Philipson, Bursting and calcium oscillations in pancreatic beta cells: Specific pacemakers, Am J Physiol Endocrinol Metab., 299 (2010): E517-E532.

[18] J. M. González-Miranda, Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model,
*Chaos*, **13** (2003), 845.

[19] J. M. González-Miranda, Complex bifurcations structures in the Hindmarsh-Rose neuron model, Int. J Bifurcation Chaos, 17 (2007): 3071-3083.

[20] J. M. González-Miranda, Nonlinear dynamics of the membrane potential of a bursting pacemaker cell,
*Chaos*, **22** (2012), 013123.

[21] J. M. González-Miranda, Pacemaker dynamics in the full Morris-Lecar model, Commun. Nonlinear Sci Numer Simulat, 19 (2014): 3229-3241.

[22] H.-G. Gu,B. Jia,G.-R. Chen, Experimental evidence of a chaotic region in a neural pacemaker, Physics Letters A, 377 (2013): 718-720.

[23] H. Gu,B. Pan,G. Chen, Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models, Nonlinear Dyn., 78 (2014): 391-407.

[24] S. Jalil, I. Belykh and A. Shilnikov. Spikes matter for phase-locked bursting in inhibitory neurons *,Phys. Rev. E*,**85 **(2012), 036214.

[25] A. Katok and B. Hasselblatt,
*Introduction to the Modern Theory of Dynamical Systems* ,Cambridge University Press, 1995.

[26] J. P. Lampreia,J. S. Ramos, Symbolic dynamics of bimodal maps, Portugal. Math., 54 (1997): 1-18.

[27] S. J. Liao,
*Beyond Perturbation: Introduction to the Homotopy Analysis Method* ,CRC Press, Chapman and Hall, Boca Raton, FL, 2004.

[28] S. J. Liao,Y. Tan, A general approach to obtain series solutions of nonlinear differential equations, Stud. Appl. Math., 119 (2007): 297-354.

[29] S. Liao,
*Advances in the Homotopy Analysis Method*, World Scientific Publishing Co, 2014.

[30] A. J. Tan,M. A. Lieberman, null, Regular and Chaotic Dynamics, Springer-Verlag, New York, 1992.

[31] A. Markovic,T. L. O. Stozer,M. Gosak,J. Dolensek,M. Marhl, Progressive glucose stimulation of islet beta cells reveals a transition from segregated to integrated modular functional connectivity patterns, Scientific Reports, 5 (2015): 7845.

[32] T. Matsumoto,T. L. O. Chua,M. Komuro., The double scroll family, IEEE Trans. Circuits Syst., 32 (1985): 797-818.

[33] J. Milnor,W. Thurston, On iterated maps of the interval, Lect. Notes in Math., 1342 (1988): 465-563.

[34] M. Misiurewicz,W. Szlenk, Entropy of piecewise monotone mappings, Studia Math., 67 (1980): 45-63.

[35] S. E. Newhouse,D. Ruelle,F. Takens, Occurrence of strange Axiom A attractors near quasiperiodic flows on T$^{m}$, $m≥3$, Commun. Math. Phys., 64 (1978): 35-40.

[36] E. Ott,
*Chaos in Dynamical Systems* ,Cambridge University Press, Cmabridge, UK, 2002.

[37] T. Parker and L. O. Chua,
*Practical Numerical Algorithms for Chaotic Systems* ,Springer-Verlag, 1989.

[38] M. G. Pederson,E. Mosekilde,K. S. Polonsky,D. S. Luciani, Complex Patterns of Metabolic and Ca$^{2+}$ entrainment in pancreatic islets by oscillatory glucose, Biophysical Journal, 105 (2013): 29-39.

[39] K. Ramasubramanian,M. S. Sriram, A Comparative study of computation of Lyapunov spectra with different algorithms, Physica D, 139 (2000): 72-86.

[40] J. Rinzel, null, Ordinary and Partial Differential Equations, Springer, New York, 1985.

[41] G. A. Rutter,D. J. Hodson, Minireview: Intraislet regulation of insulin secretion in humans, Molecular Endocrinology, 27 (2013): 1984-1995.

[42] A. Sherman, P. Carroll, R. M. Santos and I. Atwater,
*Glucose Dose Response of Pancreatic $β $-cells: Experimental and Theoretical Results*, Transitions in Biological Systems, Eds Pienum, New York, 1990.

[43] A. Stozer, M. Gosak, J. Dolensek, M. Perc, M. Marhl and M. S. Rupnik, Functional Connectivity in Islets of Langerhans from Mouse Pancreas Tissue Slices,
*PLoS Comput. Biol. *, **9** (2013), e1002923.

[44] A. Stozer, M. Gosak, J. Dolensek, M. Perc, M. Marhl and M. S. Rupnik, Functional connectinity in islets of Langerhans from mouse pancreas tissue slices,
*PLOS Comp. Biol. *,**9** (2013), e1002923.

[45] J. Wang,S. Liu,X. Liu, Quantification of synchronization phenomena in two reciprocally gap-junction coupled bursting pancreatic $β $-cells, Chaos, Solitons & Fractals, 68 (2014): 65-71.

[46] J. Wang, S. Liu and X. Liu, Bifurcation and firing patterns of the pancreatic $β $-cell *,Int. J Bifurcation Chaos*, **9** (2015), 1530024, 11pp.

Copyright Info: © 2017, Jorge Duarte, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)