Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model

  • Received: 27 January 2016 Revised: 28 June 2016 Published: 01 April 2017
  • MSC : Primary: 35A01, 35A02, 35A09; Second: 92B05

  • This paper studies the global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with appropriate initial and mixed boundary conditions. Under some practicable regularity criteria on diffusion item and nonlinearity, we establish the local existence and uniqueness of classical solutions based on a contraction mapping. This local solution can be continued for all positive time by employing the methods of energy estimates, $ L^{p} $-theory, and Schauder estimate of linear parabolic equations. A straightforward application of global existence result of classical solutions to a density-dependent diffusion model of in vitro glioblastoma growth is also presented.

    Citation: Zijuan Wen, Meng Fan, Asim M. Asiri, Ebraheem O. Alzahrani, Mohamed M. El-Dessoky, Yang Kuang. Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model[J]. Mathematical Biosciences and Engineering, 2017, 14(2): 407-420. doi: 10.3934/mbe.2017025

    Related Papers:

  • This paper studies the global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with appropriate initial and mixed boundary conditions. Under some practicable regularity criteria on diffusion item and nonlinearity, we establish the local existence and uniqueness of classical solutions based on a contraction mapping. This local solution can be continued for all positive time by employing the methods of energy estimates, $ L^{p} $-theory, and Schauder estimate of linear parabolic equations. A straightforward application of global existence result of classical solutions to a density-dependent diffusion model of in vitro glioblastoma growth is also presented.


    加载中
    [1] [ M. Agueh, Gagliardo-Nirenberg inequalities involving the gradient $ L^{2} $-norm, C. R. Acad. Sci. Paris, Ser., 346 (2008): 757-762.
    [2] [ H. Amann, Dynamic theory of quasilinear parabolic equations-Ⅰ. Abstract evolution equations, Nonlinear Anal., 12 (1988): 895-919.
    [3] [ H. Amann, Dynamic theory of quasilinear parabolic equations-Ⅲ. Global existence, Math. Z., 202 (1989): 219-250.
    [4] [ H. Amann, Dynamic theory of quasilinear parabolic equations-Ⅰ. Reaction-diffusion, Diff. Int. Eqs, 3 (1990): 13-75.
    [5] [ D. G. Aronson,H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 30 (1978): 33-76.
    [6] [ M. Bause,K. Schwegler, Analysis of stabilized higher-order finite element approximation of nonstationary and nonlinear convection-diffusion-reaction equations, Comput. Methods Appl. Mech. Engrg., 209/212 (2012): 184-196.
    [7] [ A. Q. Cai,K. A. Landman,B. D. Hughes, Multi-scale modeling of a wound-healing cell migration assay, J. Theor. Biol., 245 (2007): 576-594.
    [8] [ B. H. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion-Convection Reaction, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Vol. 362,2004.
    [9] [ T. Hillen,K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009): 183-217.
    [10] [ V. John and E. Schmeyer, On finite element methods for 3D time-dependent convectiondiffusion-reaction equations with small diffusion, BAIL 2008-Boundary and Interior Layers, Lect. Notes Comput. Sci. Eng., Springer, Berlin, 69 (2009), 173-181.
    [11] [ O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Amer. Math. Soc., Vol. 23,1968.
    [12] [ J. M. Lee,T. Hillena,M. A. Lewis, Pattern formation in prey-taxis systems, J. Biol. Dynamics, 3 (2009): 551-573.
    [13] [ G. P. Mailly,J. F. Rault, Nonlinear convection in reaction-diffusion equations under dynamical boundary conditions, Electronic J. Diff. Eqns, 2013 (2013): 1-14.
    [14] [ J. D. Murray, Mathematical Biology Ⅰ: An Introduction Springer, Vol. 17,2002, $ 3^{rd} $ Edition.
    [15] [ H. G. Othmer,A. Stevens, Aggregation, blowup and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997): 1044-1081.
    [16] [ K. J. Painter,T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D, 240 (2011): 363-375.
    [17] [ C. V. Pao,W. H. Ruan, Positive solutions of quasilinear parabolic systems with Dirichlet boundary condition, J. Diff. Eqns, 248 (2011): 1175-1211.
    [18] [ N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution, Oxford University Press, 1997.
    [19] [ T. L. Stepien,E. M. Rutter,Y. Kuang, A data-motivated density-dependent diffusion model of in vitro glioblastoma growth, Mathematical Biosciences and Engineering, 12 (2015): 1157-1172.
    [20] [ Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonl. Aanl.: RWA, 11 (2010): 2056-2064.
    [21] [ Y. Tao,M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Diff. Eqns., 257 (2014): 784-815.
    [22] [ Z. Yin, On the global existence of solutions to quasilinear parabolic equations with homogeneous Neumann boundary conditions, Glasgow Math. J., 47 (2005): 237-248.
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2288) PDF downloads(500) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog