Parameters identification for a model of T cell homeostasis

  • Received: 01 November 2014 Accepted: 29 June 2018 Published: 01 June 2015
  • MSC : Primary: 92B05, 58J45; Secondary: 93B30.

  • In this study, we consider a model of T cell homeostasis based on the Smith-Martin model. This nonlinear model is structured by age and CD44 expression. First, we establish the mathematical well-posedness of the model system. Next, we prove the theoretical identifiability regarding the up-regulation of CD44, the proliferation time phase and the rate of entry into division, by using the experimental data. Finally, we compare two versions of the Smith-Martin model and we identify which model fits the experimental data best.

    Citation: Houssein Ayoub, Bedreddine Ainseba, Michel Langlais, Rodolphe Thiébaut. Parameters identification for a model of T cell homeostasis[J]. Mathematical Biosciences and Engineering, 2015, 12(5): 917-936. doi: 10.3934/mbe.2015.12.917

    Related Papers:

    [1] Awatif Jahman Alqarni, Azmin Sham Rambely, Sana Abdulkream Alharbi, Ishak Hashim . Dynamic behavior and stabilization of brain cell reconstitution after stroke under the proliferation and differentiation processes for stem cells. Mathematical Biosciences and Engineering, 2021, 18(5): 6288-6304. doi: 10.3934/mbe.2021314
    [2] Mohammad A. Tabatabai, Wayne M. Eby, Karan P. Singh, Sejong Bae . T model of growth and its application in systems of tumor-immunedynamics. Mathematical Biosciences and Engineering, 2013, 10(3): 925-938. doi: 10.3934/mbe.2013.10.925
    [3] Lingli Zhou, Fengqing Fu, Yao Wang, Ling Yang . Interlocked feedback loops balance the adaptive immune response. Mathematical Biosciences and Engineering, 2022, 19(4): 4084-4100. doi: 10.3934/mbe.2022188
    [4] A. M. Elaiw, N. H. AlShamrani, A. D. Hobiny . Stability of an adaptive immunity delayed HIV infection model with active and silent cell-to-cell spread. Mathematical Biosciences and Engineering, 2020, 17(6): 6401-6458. doi: 10.3934/mbe.2020337
    [5] Eduardo Ibarguen-Mondragon, Lourdes Esteva, Leslie Chávez-Galán . A mathematical model for cellular immunology of tuberculosis. Mathematical Biosciences and Engineering, 2011, 8(4): 973-986. doi: 10.3934/mbe.2011.8.973
    [6] Azmy S. Ackleh, Jeremy J. Thibodeaux . Parameter estimation in a structured erythropoiesis model. Mathematical Biosciences and Engineering, 2008, 5(4): 601-616. doi: 10.3934/mbe.2008.5.601
    [7] Glenn Webb . The force of cell-cell adhesion in determining the outcome in a nonlocal advection diffusion model of wound healing. Mathematical Biosciences and Engineering, 2022, 19(9): 8689-8704. doi: 10.3934/mbe.2022403
    [8] Atefeh Afsar, Filipe Martins, Bruno M. P. M. Oliveira, Alberto A. Pinto . A fit of CD4+ T cell immune response to an infection by lymphocytic choriomeningitis virus. Mathematical Biosciences and Engineering, 2019, 16(6): 7009-7021. doi: 10.3934/mbe.2019352
    [9] A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059
    [10] Khaphetsi Joseph Mahasa, Rachid Ouifki, Amina Eladdadi, Lisette de Pillis . A combination therapy of oncolytic viruses and chimeric antigen receptor T cells: a mathematical model proof-of-concept. Mathematical Biosciences and Engineering, 2022, 19(5): 4429-4457. doi: 10.3934/mbe.2022205
  • In this study, we consider a model of T cell homeostasis based on the Smith-Martin model. This nonlinear model is structured by age and CD44 expression. First, we establish the mathematical well-posedness of the model system. Next, we prove the theoretical identifiability regarding the up-regulation of CD44, the proliferation time phase and the rate of entry into division, by using the experimental data. Finally, we compare two versions of the Smith-Martin model and we identify which model fits the experimental data best.


    [1] Mathematical biosciences, 251 (2014), 63-71.
    [2] Biophysical Journal, 84 (2003), 3414-3424.
    [3] Bulletin of Mathematical Biology, 68 (2006), 1011-1031.
    [4] Cell Proliferation, 3 (1970), 321-334.
    [5] 1932.
    [6] Microbes and Infection, 4 (2002), 529-530.
    [7] Annual Review of Immunology, 18 (2000), 83-111.
    [8] The Journal of Immunology, 179 (2007), 950-957.
    [9] Journal of Immunological Methods, 298 (2005), 183-200.
    [10] Proceedings of the National Academy of Sciences of the United States of America, 101 (2004), 16885-16890.
    [11] Nat Immunol, 7 (2006), 475-481.
    [12] The Journal of Immunology, 190 (2013), 3985-3993.
    [13] Seminars in Immunology, 17 (2005), 231-237.
    [14] Nature Reviews Immunology, 2 (2002), 547-556.
    [15] Bulletin of Mathematical Biology, 71 (2009), 1649-1670.
    [16] Bulletin of Mathematical Biology, 70 (2008), 21-44.
    [17] Journal of Theoretical Biology, 225 (2003), 275-283.
    [18] Immunol Cell Biol, 77 (1999), 499-508.
    [19] Proceedings of the National Academy of Sciences, 70 (1973), 1263-1267.
    [20] Science, 276 (1997), 2057-2762.
    [21] Visual Numerics, 1996.
    [22] The Journal of Immunology, 180 (2008), 1414-1422.
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2724) PDF downloads(445) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog