Loading [Contrib]/a11y/accessibility-menu.js

A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system

  • Functional response estimation and population tracking in predator-prey systems are critical problems in ecology. In this paper we consider a stochastic predator-prey system with a Lotka-Volterra functional response and propose a particle filtering method for: (a) estimating the behavioral parameter representing the rate of effective search per predator in the functional responseand (b) forecasting the population biomass using field data. In particular, the proposed technique combines a sequential Monte Carlo sampling scheme for tracking the time-varying biomass with the analytical integration of the unknown behavioral parameter. In order to assess the performance of the method, we show results for both synthetic and observed data collected in an acarine predator-prey system, namely the pest mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis.

    Citation: Laura Martín-Fernández, Gianni Gilioli, Ettore Lanzarone, Joaquín Míguez, Sara Pasquali, Fabrizio Ruggeri, Diego P. Ruiz. A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system[J]. Mathematical Biosciences and Engineering, 2014, 11(3): 573-597. doi: 10.3934/mbe.2014.11.573

    Related Papers:

    [1] Romulus Breban, Ian McGowan, Chad Topaz, Elissa J. Schwartz, Peter Anton, Sally Blower . Modeling the potential impact of rectal microbicides to reduce HIV transmission in bathhouses. Mathematical Biosciences and Engineering, 2006, 3(3): 459-466. doi: 10.3934/mbe.2006.3.459
    [2] Andrew Omame, Sarafa A. Iyaniwura, Qing Han, Adeniyi Ebenezer, Nicola L. Bragazzi, Xiaoying Wang, Woldegebriel A. Woldegerima, Jude D. Kong . Dynamics of Mpox in an HIV endemic community: A mathematical modelling approach. Mathematical Biosciences and Engineering, 2025, 22(2): 225-259. doi: 10.3934/mbe.2025010
    [3] Gigi Thomas, Edward M. Lungu . A two-sex model for the influence of heavy alcohol consumption on the spread of HIV/AIDS. Mathematical Biosciences and Engineering, 2010, 7(4): 871-904. doi: 10.3934/mbe.2010.7.871
    [4] Brandy Rapatski, Juan Tolosa . Modeling and analysis of the San Francisco City Clinic Cohort (SFCCC) HIV-epidemic including treatment. Mathematical Biosciences and Engineering, 2014, 11(3): 599-619. doi: 10.3934/mbe.2014.11.599
    [5] Brandy Rapatski, James Yorke . Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences and Engineering, 2009, 6(1): 135-143. doi: 10.3934/mbe.2009.6.135
    [6] Aditya S. Khanna, Dobromir T. Dimitrov, Steven M. Goodreau . What can mathematical models tell us about the relationship between circular migrations and HIV transmission dynamics?. Mathematical Biosciences and Engineering, 2014, 11(5): 1065-1090. doi: 10.3934/mbe.2014.11.1065
    [7] Gesham Magombedze, Winston Garira, Eddie Mwenje . Modelling the immunopathogenesis of HIV-1 infection and the effect of multidrug therapy: The role of fusion inhibitors in HAART. Mathematical Biosciences and Engineering, 2008, 5(3): 485-504. doi: 10.3934/mbe.2008.5.485
    [8] Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa . A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences and Engineering, 2005, 2(4): 811-832. doi: 10.3934/mbe.2005.2.811
    [9] Damilola Olabode, Libin Rong, Xueying Wang . Stochastic investigation of HIV infection and the emergence of drug resistance. Mathematical Biosciences and Engineering, 2022, 19(2): 1174-1194. doi: 10.3934/mbe.2022054
    [10] Sophia Y. Rong, Ting Guo, J. Tyler Smith, Xia Wang . The role of cell-to-cell transmission in HIV infection: insights from a mathematical modeling approach. Mathematical Biosciences and Engineering, 2023, 20(7): 12093-12117. doi: 10.3934/mbe.2023538
  • Functional response estimation and population tracking in predator-prey systems are critical problems in ecology. In this paper we consider a stochastic predator-prey system with a Lotka-Volterra functional response and propose a particle filtering method for: (a) estimating the behavioral parameter representing the rate of effective search per predator in the functional responseand (b) forecasting the population biomass using field data. In particular, the proposed technique combines a sequential Monte Carlo sampling scheme for tracking the time-varying biomass with the analytical integration of the unknown behavioral parameter. In order to assess the performance of the method, we show results for both synthetic and observed data collected in an acarine predator-prey system, namely the pest mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis.


    [1] Econometrica, 70 (2002), 223-262.
    [2] Englewood Cliffs, 1979.
    [3] Journal of the Royal Statistical Society Series B-Statistical Methodology, 72 (2010), 269-342.
    [4] Proceedings of the IEEE, 92 (2004), 423-438.
    [5] Springer, 2008.
    [6] J. Roy. Stat. Soc. Ser. B, 68 (2006), 333-382.
    [7] Ecological Modelling, 170 (2003), 155-171.
    [8] Proceedings of the IEEE, 95 (2007), 899-924.
    [9] IEE Proceedings - Radar, Sonar and Navigation, 146 (1999), 2-7.
    [10] Ecology, 75 (1994), 1254-1264.
    [11] Journal of the Royal Statistics Society B, 62 (2000), 493-508.
    [12] Journal of the Royal Statistical Society: Series B (Statistical Methodology), (2012).
    [13] Academic Press, New York, 1999.
    [14] in ISPA 2005: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005, 64-69.
    [15] Springer, New York (USA), 2001.
    [16] Statistics and Computing, 10 (2000), 197-208.
    [17] Environmetrics, 17 (2006), 435-455.
    [18] Environmetrics, 22 (2011), 501-515.
    [19] Ecology, 92 (2011), 568-575.
    [20] J. Bus. Econ. Stat., 20 (2002), 297-316.
    [21] Econometrica, 69 (2001), 959-993.
    [22] J. Bus. Econ. Stat., 19 (2001), 177-191.
    [23] Bulletin of Mathematical Biology, 70 (2008), 358-381.
    [24] Mathematical Biosciences and Engineering, 9 (2012), 75-96.
    [25] in Atti del Convegno "La difesa delle colture in agricoltura biologica" - Notiziario sulla protezione delle piante, vol. 13, 2001.
    [26] Biometrics, 61 (2005), 781-788.
    [27] Interface Focus, 1 (2011), 807-820.
    [28] IEE Proceedings-F, 140 (1993), 107-113.
    [29] Proc. Roy. Soc. Lond. B, 267 (2000), 1611-1620.
    [30] Journal of Basic Engineering, 82 (1960), 35-45.
    [31] Ecology, 93 (2012), 256-263.
    [32] in Sequential Monte Carlo Methods in Practice (eds. A. Doucet, N. de Freitas and N. Gordon), chap. 10, Springer, 2001, 197-223.
    [33] Journal of the American Statistical Association, 93 (1998), 1032-1044.
    [34] Statistics and Computing.
    [35] Springer, 2004.
    [36] Ecology, 77 (1996), 337-349.
    [37] Scand. J. Stat., 22 (1995), 55-71.
    [38] Journal of the American statistical association, 94 (1999), 590-599.
    [39] Arnold, London, 1999.
    [40] Springer, 2004.
    [41] Ecological Applications, 12 (2002), 927-936.
    [42] Int. Stat. Rev., 72 (2004), 337-354.
    [43] J. Comput. Graph. Stat., 16 (2007).
    [44] Environmental Entomology, 32 (2003), 151-162.
  • This article has been cited by:

    1. Peng Wu, Hongyong Zhao, MODELING AND DYNAMICS OF HIV TRANSMISSION AMONG HIGH-RISK GROUPS IN GUANGZHOU CITY, CHINA, 2020, 10, 2156-907X, 1561, 10.11948/20190252
    2. Kevin D. Dieckhaus, Toan H. Ha, Stephen L. Schensul, Avina Sarna, Modeling HIV Transmission from Sexually Active Alcohol-Consuming Men in ART Programs to Seronegative Wives, 2020, 19, 2325-9582, 232595822095228, 10.1177/2325958220952287
    3. Min Lu, Yaqin Shu, Jicai Huang, Shigui Ruan, Xinan Zhang, Lan Zou, Modelling homosexual and heterosexual transmissions of hepatitis B virus in China, 2021, 15, 1751-3758, 177, 10.1080/17513758.2021.1896797
    4. Matthew A. Ogunniran, Mohammed O. Ibrahim, Application of Elzaki Transform Method for Solving and Interpreting HIV Superinfection Model, 2023, 17, 2074-1278, 1, 10.46300/91014.2023.17.1
    5. M. A. Ogunniran, M. O. Ibrahim, Sensitivity Analysis of a HIV Superinfection Model, 2024, 8, 2522-9400, 431, 10.59573/emsj.8(3).2024.32
    6. Xiaodan Sun, Weike Zhou, Yuhua Ruan, Guanghua Lan, Qiuying Zhu, Yanni Xiao, Perceived risk induced multiscale model: Coupled within-host and between-host dynamics and behavioral dynamics, 2025, 599, 00225193, 111998, 10.1016/j.jtbi.2024.111998
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3446) PDF downloads(561) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog