Loading [Contrib]/a11y/accessibility-menu.js

A mathematical model studying mosquito-stage transmission-blocking vaccines

  • Received: 01 March 2013 Accepted: 29 June 2018 Published: 01 June 2014
  • MSC : Primary: 92D30.

  • A compartmental deterministic model is proposed to evaluatethe effectiveness of transmission-blocking vaccines of malaria, which targets at the parasite stage in the mosquito.The model is rigorously analyzed and numerical simulations are performed.The results and implications are discussed.

    Citation: Ruijun Zhao, Jemal Mohammed-Awel. A mathematical model studying mosquito-stage transmission-blocking vaccines[J]. Mathematical Biosciences and Engineering, 2014, 11(5): 1229-1245. doi: 10.3934/mbe.2014.11.1229

    Related Papers:

    [1] Jia Li . Malaria model with stage-structured mosquitoes. Mathematical Biosciences and Engineering, 2011, 8(3): 753-768. doi: 10.3934/mbe.2011.8.753
    [2] Khadiza Akter Eme, Md Kamrujjaman, Muntasir Alam, Md Afsar Ali . Vaccination and combined optimal control measures for malaria prevention and spread mitigation. Mathematical Biosciences and Engineering, 2025, 22(8): 2039-2071. doi: 10.3934/mbe.2025075
    [3] Zhiping Liu, Zhen Jin, Junyuan Yang, Juan Zhang . The backward bifurcation of an age-structured cholera transmission model with saturation incidence. Mathematical Biosciences and Engineering, 2022, 19(12): 12427-12447. doi: 10.3934/mbe.2022580
    [4] Pride Duve, Samuel Charles, Justin Munyakazi, Renke Lühken, Peter Witbooi . A mathematical model for malaria disease dynamics with vaccination and infected immigrants. Mathematical Biosciences and Engineering, 2024, 21(1): 1082-1109. doi: 10.3934/mbe.2024045
    [5] Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou . Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences and Engineering, 2016, 13(4): 813-840. doi: 10.3934/mbe.2016019
    [6] Baojun Song . Basic reinfection number and backward bifurcation. Mathematical Biosciences and Engineering, 2021, 18(6): 8064-8083. doi: 10.3934/mbe.2021400
    [7] Kai Zhang, Xinwei Wang, Hua Liu, Yunpeng Ji, Qiuwei Pan, Yumei Wei, Ming Ma . Mathematical analysis of a human papillomavirus transmission model with vaccination and screening. Mathematical Biosciences and Engineering, 2020, 17(5): 5449-5476. doi: 10.3934/mbe.2020294
    [8] Xi-Chao Duan, Xue-Zhi Li, Maia Martcheva . Dynamics of an age-structured heroin transmission model with vaccination and treatment. Mathematical Biosciences and Engineering, 2019, 16(1): 397-420. doi: 10.3934/mbe.2019019
    [9] Kazeem Oare Okosun, Robert Smith? . Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences and Engineering, 2017, 14(2): 377-405. doi: 10.3934/mbe.2017024
    [10] Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche . Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences and Engineering, 2009, 6(2): 333-362. doi: 10.3934/mbe.2009.6.333
  • A compartmental deterministic model is proposed to evaluatethe effectiveness of transmission-blocking vaccines of malaria, which targets at the parasite stage in the mosquito.The model is rigorously analyzed and numerical simulations are performed.The results and implications are discussed.


    [1] J. Theor. Biol., 320 (2013), 58-65.
    [2] Proc. R. Soc. B., 278 (2011), 1705-1712.
    [3] Math. Biosci., 90 (1988), 385-396.
    [4] PLoS ONE, 5 (2010), e13588.
    [5] Bulletin of Mathematical Biology, 70 (2008), 1272-1296.
    [6] Am. J. Trop. Med. Hyg, 83 (2010), 230-240.
    [7] Applied Mathematics and Computation, 195 (2008), 641-662.
    [8] J. Math. Bio., 36 (1998), 227-248.
    [9] Math. Biosci., 205 (2008), 11-25.
    [10] 3rd edition, Hodder Arnold, 1999.
    [11] Proc. R. Soc. A, 467 (2011), 2127-2148.
    [12] Parasitology, 115 (1997), 133-141.
    [13] Parasitology, 117 (1998), 411-417.
    [14] Proc. Biol. Sci., 271 (2004), 301-309.
    [15] Malaria Journal, 7 (2008), 67 pp.
    [16] Proceedings of the World Congress on Engineering and Computer Science, 2009.
    [17] CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1976.
    [18] Journal of Theoretical Biology, 254 (2008), 178-196.
    [19] Oxford University Press, London, 1957.
    [20] Malaria Journal, 10 (2011), 202 pp.
    [21] in Global Burden of Disease and Risk Factors (eds. A. D. Lopez, C. D. Mathers, M. Ezzati, D. T. Jamison and C. J. L. Murray), Chapter 3, World Bank, Washington (DC), 2006.
    [22] Trends in Parasitology, 18 (2002), 429-433.
    [23] Math. Model. Nat. Phenom., 5 (2010), 96-108.
    [24] Nature Medicine, 17 (2011), 1560-1561.
    [25] PLoS Med., 3 (2006), e141.
    [26] Vol. 85, WHO, Geneva, 2007.
    [27] PLoS One, 3 (2008), e2661.
    [28] Waterlow and Sons Limited, London, 1903.
    [29] The New England Journal of Medicine, 365 (2011), 1863-1875.
    [30] Curr. Opin. Infect. Dis., 20 (2007), 476-481.
    [31] Bull. Math. Biol., 72 (2010), 63-93.
    [32] Trends in Parasitology, 27 (2011), 190-196.
    [33] Math. Biosci., 18 (2002), 29-48.
    [34] Drug Resist. Updat., 1 (1998), 3-9.
    [35] The New England Journal of Medicine, 365 (2011), 1926-1927.
    [36] Vol. 85, WHO, Geneva, 2004.
  • This article has been cited by:

    1. Jemal Mohammed-Awel, Eric Numfor, Ruijun Zhao, Suzanne Lenhart, A new mathematical model studying imperfect vaccination: Optimal control analysis, 2021, 500, 0022247X, 125132, 10.1016/j.jmaa.2021.125132
    2. Jemal Mohammed-Awel, Eric Numfor, Optimal insecticide-treated bed-net coverage and malaria treatment in a malaria-HIV co-infection model, 2017, 11, 1751-3758, 160, 10.1080/17513758.2016.1192228
    3. Jemal Mohammed-Awel, Ruijun Zhao, Eric Numfor, Suzanne Lenhart, Management strategies in a malaria model combining human and transmission-blocking vaccines, 2017, 22, 1553-524X, 977, 10.3934/dcdsb.2017049
    4. Huike Wu, Zhixing Hu, Tongqian Zhang, Malaria Transmission Model with Transmission-Blocking Drugs and a Time Delay, 2021, 2021, 1563-5147, 1, 10.1155/2021/1339086
    5. Bevina D. Handari, Rossi A. Ramadhani, Chidozie W. Chukwu, Sarbaz H. A. Khoshnaw, Dipo Aldila, An Optimal Control Model to Understand the Potential Impact of the New Vaccine and Transmission-Blocking Drugs for Malaria: A Case Study in Papua and West Papua, Indonesia, 2022, 10, 2076-393X, 1174, 10.3390/vaccines10081174
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3129) PDF downloads(669) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog