Mathematical Biosciences and Engineering, 2013, 10(1): 75-101. doi: 10.3934/mbe.2013.10.75.

65C20, 74B99, 74C99, 74D99, 92C05, 92C10, 74L15.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix

1. Politecnico di Torino, Torino, 10124
2. Center for Applied Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, 90033, CA
3. Dipartimento di Scienze Matematiche, Politecnico di Torino, Torino, 10124

The basement membrane (BM) and extracellular matrix (ECM) play critical roles in developmental and cancer biology, and are of great interest in biomathematics. We introduce a model of mechanical cell-BM-ECM interactions that extends current (visco)elastic models (e.g. [8,16]), and connects to recent agent-based cell models (e.g. [2,3,20,26]). We model the BM as a linked series of Hookean springs, each with time-varying length, thickness, and spring constant. Each BM spring node exchanges adhesive and repulsive forces with the cell agents using potential functions. We model elastic BM-ECM interactions with analogous ECM springs. We introduce a new model of plastic BM and ECM reorganization in response to prolonged strains, and new constitutive relations that incorporate molecular-scale effects of plasticity into the spring constants. We find that varying the balance of BM and ECM elasticity alters the node spacing along cell boundaries, yielding a nonuniform BM thickness. Uneven node spacing generates stresses that are relieved by plasticity over long times. We find that elasto-viscoplastic cell shape response is critical to relieving uneven stresses in the BM. Our modeling advances and results highlight the importance of rigorously modeling of cell-BM-ECM interactions in clinically important conditions with significant membrane deformations and time-varying membrane properties, such as aneurysms and progression from in situ to invasive carcinoma.
  Figure/Table
  Supplementary
  Article Metrics

Keywords biomechanics; extracellular matrix; basement membrane; elasto-plasticity.; Agent-based model

Citation: Gianluca D'Antonio, Paul Macklin, Luigi Preziosi. An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Mathematical Biosciences and Engineering, 2013, 10(1): 75-101. doi: 10.3934/mbe.2013.10.75

References

  • 1. Advances in Molecular and Cell Biology, 6 (1993), 183-206.
  • 2. PLoS Comput. Biol., 7 (2011), e1001045.
  • 3. FEBS J. (2012, in press).
  • 4. Chemistry and Biology, 3 (1996), 895-904.
  • 5. Cell, 103 (2000), 481-490.
  • 6. J. Theor. Biol., 231 (2004), 203-222.
  • 7. in preparation (2012).
  • 8. J. Theor. Biol., 298 (2012), 82-91.
  • 9. Math. Med. Biol., 20 (2003), 277-308.
  • 10. J. Theor. Biol., 232 (2005), 523-543.
  • 11. Phys. Biol., 6 (2009).
  • 12. Phys. Rev. E, 47 (1993), 2128-2154.
  • 13. Phys. Rev. Lett., 69 (1992), 2013-2016.
  • 14. Carcinogenesis, 25 (2004), 1543-1549.
  • 15. Cancer and Metastasis Review, 25 (2006), 35-43.
  • 16. Progress in Biophysics and Molecular Biology, 106 (2011), 353-379.
  • 17. Natural Structural Biology, 8 (2001), 573-574.
  • 18. in "Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach'' (eds. V. Cristini and J. S. Lowengrub), Cambridge University Press (2010), 8-23.
  • 19. in "Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach'' (eds. V. Cristini and J. S. Lowengrub), Cambridge University Press (2010), 88-122.
  • 20. J. Theor. Biol., 301 (2012), 122-140.
  • 21. in "Computational Biology: Issues and Applications in Oncology'' (ed. T. Pham), Springer (2009), 77-112.
  • 22. in "Multiscale Computer Modeling in Biomechanics and Biomedical Engineering'' (ed. A. Gefen), Springer (2013), in press.
  • 23. J. Theor. Biol., 263 (2010), 393-406.
  • 24. Bull. Math. Biol., 71 (2009), 1189-1227.
  • 25. J. Theor. Biol., 262 (2010), 35-47.
  • 26. Math. Comp. Model., 47 (2006), 533-545.
  • 27. J. Theor. Biol., 243 (2006), 532-541.
  • 28. Phys. Biol., 5 (2008), 015002.
  • 29. Phys. Biol., 8 (2011), 045007.
  • 30. Multiscale Model. Sim., 10 (2012), 342-382.
  • 31. CRC/Academic Press, 2012.
  • 32. Math. Biosci. Eng., (2013, in press).
  • 33. Comptes Rendus Physique, 10 (2009), 790-811.
  • 34. Carcinogenesis, 20 (1999), 749-755.

 

This article has been cited by

  • 1. MunJu Kim, Damon Reed, Katarzyna A. Rejniak, The formation of tight tumor clusters affects the efficacy of cell cycle inhibitors: A hybrid model study, Journal of Theoretical Biology, 2014, 352, 31, 10.1016/j.jtbi.2014.02.027
  • 2. Patrícia Santos-Oliveira, António Correia, Tiago Rodrigues, Teresa M Ribeiro-Rodrigues, Paulo Matafome, Juan Carlos Rodríguez-Manzaneque, Raquel Seiça, Henrique Girão, Rui D. M. Travasso, Hans Van Oosterwyck, The Force at the Tip - Modelling Tension and Proliferation in Sprouting Angiogenesis, PLOS Computational Biology, 2015, 11, 8, e1004436, 10.1371/journal.pcbi.1004436
  • 3. Nick Štorgel, Matej Krajnc, Polona Mrak, Jasna Štrus, Primož Ziherl, Quantitative Morphology of Epithelial Folds, Biophysical Journal, 2016, 110, 1, 269, 10.1016/j.bpj.2015.11.024
  • 4. Zuzanna Szymańska, Maciej Cytowski, Elaine Mitchell, Cicely K. Macnamara, Mark A. J. Chaplain, Computational Modelling of Cancer Development and Growth: Modelling at Multiple Scales and Multiscale Modelling, Bulletin of Mathematical Biology, 2018, 80, 5, 1366, 10.1007/s11538-017-0292-3
  • 5. Paul Macklin, Hermann B. Frieboes, Jessica L. Sparks, Ahmadreza Ghaffarizadeh, Samuel H. Friedman, Edwin F. Juarez, Edmond Jonckheere, Shannon M. Mumenthaler, , Systems Biology of Tumor Microenvironment, 2016, Chapter 12, 225, 10.1007/978-3-319-42023-3_12
  • 6. Stefan Hoehme, Adrian Friebel, Seddik Hammad, Dirk Drasdo, Jan G. Hengstler, , Hepatocyte Transplantation, 2017, Chapter 22, 319, 10.1007/978-1-4939-6506-9_22
  • 7. P. Van Liedekerke, A. Buttenschön, D. Drasdo, , Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes, 2018, 245, 10.1016/B978-0-12-811718-7.00014-9
  • 8. Waseem Asghar, Rami El Assal, Hadi Shafiee, Sharon Pitteri, Ramasamy Paulmurugan, Utkan Demirci, Engineering cancer microenvironments for in vitro 3-D tumor models, Materials Today, 2015, 18, 10, 539, 10.1016/j.mattod.2015.05.002
  • 9. P. Van Liedekerke, M. M. Palm, N. Jagiella, D. Drasdo, Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results, Computational Particle Mechanics, 2015, 2, 4, 401, 10.1007/s40571-015-0082-3
  • 10. Annelies Lejon, Bert Mortier, Giovanni Samaey, Variance-Reduced Simulation of Multiscale Tumor Growth Modeling, Multiscale Modeling & Simulation, 2017, 15, 1, 388, 10.1137/15M1043224
  • 11. H. L. Rocha, R. C. Almeida, E. A. B. F. Lima, A. C. M. Resende, J. T. Oden, T. E. Yankeelov, A hybrid three-scale model of tumor growth, Mathematical Models and Methods in Applied Sciences, 2018, 28, 01, 61, 10.1142/S0218202518500021
  • 12. Chin F. Ng, Hermann B. Frieboes, Model of vascular desmoplastic multispecies tumor growth, Journal of Theoretical Biology, 2017, 430, 245, 10.1016/j.jtbi.2017.05.013
  • 13. Mohammad Soheilypour, Mohammad R. K. Mofrad, Agent-Based Modeling in Molecular Systems Biology, BioEssays, 2018, 40, 7, 1800020, 10.1002/bies.201800020
  • 14. Andrés A. Barrea, Matias E. Hernández, Rubén Spies, Optimal chemotherapy schedules from tumor entropy, Computational and Applied Mathematics, 2017, 36, 2, 991, 10.1007/s40314-015-0275-7
  • 15. Kelvin K.L. Wong, Three-dimensional discrete element method for the prediction of protoplasmic seepage through membrane in a biological cell, Journal of Biomechanics, 2017, 65, 115, 10.1016/j.jbiomech.2017.10.023
  • 16. Angela M. Jarrett, Ernesto A.B.F. Lima, David A. Hormuth, Matthew T. McKenna, Xinzeng Feng, David A. Ekrut, Anna Claudia M. Resende, Amy Brock, Thomas E. Yankeelov, Mathematical models of tumor cell proliferation: A review of the literature, Expert Review of Anticancer Therapy, 2018, 1, 10.1080/14737140.2018.1527689
  • 17. Paul Macklin, Shannon Mumenthaler, John Lowengrub, , Multiscale Computer Modeling in Biomechanics and Biomedical Engineering, 2013, Chapter 150, 349, 10.1007/8415_2012_150
  • 18. Gianluca Ascolani, Timothy M. Skerry, Damien Lacroix, Enrico Dall’Ara, Aban Shuaib, Revealing hidden information in osteoblast’s mechanotransduction through analysis of time patterns of critical events, BMC Bioinformatics, 2020, 21, 1, 10.1186/s12859-020-3394-0
  • 19. Mark A. J. Chaplain, , Approaching Complex Diseases, 2020, Chapter 7, 149, 10.1007/978-3-030-32857-3_7

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved