Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Finite element approximation of a population spatial adaptation model

1. Dpto. de Matemáticas, Universidad de Oviedo, c/ Calvo Sotelo, 33007-Oviedo

In [18], Sighesada, Kawasaki and Teramoto presented a system of partial differential equations for modeling spatial segregation of interacting species. Apart from competitive Lotka-Volterra (reaction) and population pressure (cross-diffusion) terms, a convective term modeling the populations attraction to more favorable environmental regions was included. In this article, we study numerically a modification of their convective term to take account for the notion of spatial adaptation of populations. After describing the model, in which a time non-local drift term is considered, we propose a numerical discretization in terms of a mass-preserving time semi-implicit finite element method. Finally, we provied the results of some biologically inspired numerical experiments showing qualitative differences between the original model of [18] and the model proposed in this article.
  Figure/Table
  Supplementary
  Article Metrics

Keywords finite element; Population dynamics; segregation.; evolution problem; spatial adaptation; time non-local convection; cross-diffusion

Citation: Gonzalo Galiano, Julián Velasco. Finite element approximation of a population spatial adaptation model. Mathematical Biosciences and Engineering, 2013, 10(3): 637-647. doi: 10.3934/mbe.2013.10.637

References

  • 1. Numer. Math., 98 (2004), 195-221.
  • 2. SIAM J. Math. Anal., 36 (2004), 301-322.
  • 3. Commun. Part. Diff. Eqs., 32 (2007), 127-148.
  • 4. Math. Z., 194 (1987), 375-396.
  • 5. Math. Nachr., 195 (1998), 77-114.
  • 6. Appl. Math. Comput., 218 (2011), 4587-4594.
  • 7. Comput. Math. Appl., 64 (2012), 1927-1936.
  • 8. RACSAM Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A. Mat., 95 (2001), 281-295.
  • 9. Numer. Math., 93 (2003), 655-673.
  • 10. Banach Center Publ., 63 (2004), 209-216.
  • 11. SIAM J. Math. Anal., 35 (2003), 561-578.
  • 12. Nonlinear Anal., 12 (2011), 2826-2838.
  • 13. Appl. Numer. Math., 59 (2009), 1059-1074.
  • 14. Nonlinear Analysis TMA, 8 (1984), 1121-1144.
  • 15. J. Diff. Eqs., 131 (1996), 79-131.
  • 16. Adv. Math., Beijing, 25 (1996), 283-284.
  • 17. J. Math. Biol., 9 (1980), 49-64.
  • 18. J. Theor. Biol., 79 (1979), 83-99.
  • 19. Nonlinear Analysis TMA, 21 (1993), 603-630.

 

This article has been cited by

  • 1. Vernard S. Fennell, M. Yashar S. Kalani, Gursant Atwal, Nikolay L. Martirosyan, Robert F. Spetzler, Biology of Saccular Cerebral Aneurysms: A Review of Current Understanding and Future Directions, Frontiers in Surgery, 2016, 3, 10.3389/fsurg.2016.00043
  • 2. B. Bozzini, G. Gambino, D. Lacitignola, S. Lupo, M. Sammartino, I. Sgura, Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth, Computers & Mathematics with Applications, 2015, 70, 8, 1948, 10.1016/j.camwa.2015.08.019

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved