Optimal isolation strategies of emerging infectious diseases with limited resources

  • Received: 01 September 2012 Accepted: 29 June 2018 Published: 01 August 2013
  • MSC : Primary: 92D30.

  • A classical deterministic SIR model is modified to take into accountof limited resources for diagnostic confirmation/medical isolation. We show that this modificationleads to four different scenarios (instead of three scenarios in comparison with the SIR model) for optimal isolation strategies, and obtainanalytic solutions for the optimal control problem that minimize the outbreak size under the assumptionof limited resources for isolation. These solutions and their corresponding optimal control policies arederived explicitly in terms of initial conditions, model parameters and resources for isolation (such as the number of intensive care units).With sufficient resources, the optimal control strategy is the normal Bang-Bangcontrol. However, with limited resources the optimal control strategy requires to switch totime-variant isolation at an optimal rate proportional to the ratio of isolated cases over the entire infected population once the maximum capacityis reached.

    Citation: Yinggao Zhou, Jianhong Wu, Min Wu. Optimal isolation strategies of emerging infectious diseases with limited resources[J]. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1691-1701. doi: 10.3934/mbe.2013.10.1691

    Related Papers:

    [1] Anuj Mubayi, Christopher Kribs Zaleta, Maia Martcheva, Carlos Castillo-Chávez . A cost-based comparison of quarantine strategies for new emerging diseases. Mathematical Biosciences and Engineering, 2010, 7(3): 687-717. doi: 10.3934/mbe.2010.7.687
    [2] Chenxi Huang, Qianqian Zhang, Sanyi Tang . Non-smooth dynamics of a SIR model with nonlinear state-dependent impulsive control. Mathematical Biosciences and Engineering, 2023, 20(10): 18861-18887. doi: 10.3934/mbe.2023835
    [3] Wentao Hu, Yufeng Shi, Cuixia Chen, Ze Chen . Optimal strategic pandemic control: human mobility and travel restriction. Mathematical Biosciences and Engineering, 2021, 18(6): 9525-9562. doi: 10.3934/mbe.2021468
    [4] Zehan Liu, Daoxin Qiu, Shengqiang Liu . A two-group epidemic model with heterogeneity in cognitive effects. Mathematical Biosciences and Engineering, 2025, 22(5): 1109-1139. doi: 10.3934/mbe.2025040
    [5] Holly Gaff, Elsa Schaefer . Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences and Engineering, 2009, 6(3): 469-492. doi: 10.3934/mbe.2009.6.469
    [6] Wei Ding, Li Ding, Zhengmin Kong, Feng Liu . The SAITS epidemic spreading model and its combinational optimal suppression control. Mathematical Biosciences and Engineering, 2023, 20(2): 3342-3354. doi: 10.3934/mbe.2023157
    [7] Zi Sang, Zhipeng Qiu, Xiefei Yan, Yun Zou . Assessing the effect of non-pharmaceutical interventions on containing an emerging disease. Mathematical Biosciences and Engineering, 2012, 9(1): 147-164. doi: 10.3934/mbe.2012.9.147
    [8] Jing-An Cui, Fangyuan Chen . Effects of isolation and slaughter strategies in different species on emerging zoonoses. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1119-1140. doi: 10.3934/mbe.2017058
    [9] Erika Asano, Louis J. Gross, Suzanne Lenhart, Leslie A. Real . Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical Biosciences and Engineering, 2008, 5(2): 219-238. doi: 10.3934/mbe.2008.5.219
    [10] Olivia Prosper, Omar Saucedo, Doria Thompson, Griselle Torres-Garcia, Xiaohong Wang, Carlos Castillo-Chavez . Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 141-170. doi: 10.3934/mbe.2011.8.141
  • A classical deterministic SIR model is modified to take into accountof limited resources for diagnostic confirmation/medical isolation. We show that this modificationleads to four different scenarios (instead of three scenarios in comparison with the SIR model) for optimal isolation strategies, and obtainanalytic solutions for the optimal control problem that minimize the outbreak size under the assumptionof limited resources for isolation. These solutions and their corresponding optimal control policies arederived explicitly in terms of initial conditions, model parameters and resources for isolation (such as the number of intensive care units).With sufficient resources, the optimal control strategy is the normal Bang-Bangcontrol. However, with limited resources the optimal control strategy requires to switch totime-variant isolation at an optimal rate proportional to the ratio of isolated cases over the entire infected population once the maximum capacityis reached.


    [1] D. Phil. Thesis, Univ. Of Sussex, 1972.
    [2] J. Appl. Probability, 10 (1973), 247-262.
    [3] Adv. Appl. Probability, 6 (1974), 494-511.
    [4] Oxford Science Publications, Oxford, 1991.
    [5] Opt. Control Appl. Methods, 21 (2000), 269-285.
    [6] PNAS, 104 (2007), 7588-7593.
    [7] Clin. Infect. Dis., 37 (2003), 1094-1101.
    [8] Taylor & Francis, New York, London, 1975.
    [9] BMC Medicine, 4 (2006).
    [10] Stat. Med., 23 (2004), 3469-3487.
    [11] J. Theor. Bio., 241 (2005), 193-204.
    [12] J. R. Soc. Interface, 4 (2006), 155-166.
    [13] J. Math. Biol., 39 (1999), 309-331.
    [14] PNAS, 103 (2006), 12221-12222.
    [15] PNAS, 101 (2004), 16915-16916.
    [16] PNAS, 103 (2006), 15639-15697.
    [17] Nature, 442 (2006), 448-452.
    [18] Springer-Verlag, Berlin-Heidelberg, 2007.
    [19] Emerg. Infect. Dis., 12 (2006), 1671-1681.
    [20] J. Math. Bio., 62 (2011), 423-451.
    [21] Mechanical Engineering Series, Springer-Verlag, New York, 2003.
    [22] PNAS, 99 (2002), 10935-10940.
    [23] BMC Infect. Dis., 10 (2010), 1-13.
    [24] Science, 300 (2003), 1966-1970.
    [25] Am. J. Epidemiol., 159 (2004), 623-633.
    [26] Science, 309 (2005), 1083-1087.
    [27] Emerg. Infect. Dis., 12 (2006), 1961-1964.
    [28] Nature, 432 (2004), 904-906.
    [29] Adv. Appl. Probability, 6 (1974), 622-635.
    [30] Science, 300 (2003), 1961-1966.
    [31] PNAS, 103 (2007), 12637-12642.
    [32] J. Oper. Res. Soc., 29 (1978), 129-136.
    [33] J. Oper. Res. Soc., 29 (1978), 265-268.
    [34] BMC Infect. Dis., 3 (2003), 1-16.
    [35] PLoS Medicine, 2 (2005), 1532-1540.
    [36] Science, 302 (2003), 1519-1522.
    [37] Math. Biosci., 26 (1975), 325-346.
    [38] PLoS Medicine, 3 (2006), 1532-1540.
  • This article has been cited by:

    1. Tianhu Yu, Dengqing Cao, Shengqiang Liu, Epidemic model with group mixing: Stability and optimal control based on limited vaccination resources, 2018, 61, 10075704, 54, 10.1016/j.cnsns.2018.01.011
    2. Ingo Bulla, Ian H. Spickanll, Dmitry Gromov, Ethan Obie Romero-Severson, Geng-Feng Fu, Sensitivity of joint contagiousness and susceptibility-based dynamic optimal control strategies for HIV prevention, 2018, 13, 1932-6203, e0204741, 10.1371/journal.pone.0204741
    3. Pierre-Alexandre Bliman, Michel Duprez, Yannick Privat, Nicolas Vauchelet, Optimal Immunity Control and Final Size Minimization by Social Distancing for the SIR Epidemic Model, 2021, 0022-3239, 10.1007/s10957-021-01830-1
    4. Ashish Goyal, John M. Murray, Recognizing the impact of endemic hepatitis D virus on hepatitis B virus eradication, 2016, 112, 00405809, 60, 10.1016/j.tpb.2016.08.004
    5. Zhimin Chen, Kaihui Liu, Xiuxiang Liu, Yijun Lou, Modelling epidemics with fractional-dose vaccination in response to limited vaccine supply, 2020, 486, 00225193, 110085, 10.1016/j.jtbi.2019.110085
    6. Yiliang Chen, Buyu Wen, Zhidong Teng, The global dynamics for a stochastic SIS epidemic model with isolation, 2018, 492, 03784371, 1604, 10.1016/j.physa.2017.11.085
    7. Han Ma, Qimin Zhang, Threshold dynamics and optimal control on an age-structured SIRS epidemic model with vaccination, 2021, 18, 1551-0018, 9474, 10.3934/mbe.2021465
    8. Erivelton G. Nepomuceno, Márcia L. C. Peixoto, Márcio J. Lacerda, Andriana S. L. O. Campanharo, Ricardo H. C. Takahashi, Luis A. Aguirre, Application of Optimal Control of Infectious Diseases in a Model-Free Scenario, 2021, 2, 2662-995X, 10.1007/s42979-021-00794-3
    9. A. Gómez-Corral, M.J. Lopez-Herrero, D. Taipe, A Markovian epidemic model in a resource-limited environment, 2023, 458, 00963003, 128252, 10.1016/j.amc.2023.128252
    10. A. A. Petrov, O. V. Druzhinina, O. N. Masina, A. V. Demidova, Development of Algorithmic and Software Support for Symbolic Computations in Problems of Constructing Controlled Compartmental Models of Dynamic Systems, 2025, 51, 0361-7688, 21, 10.1134/S0361768824700580
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2310) PDF downloads(431) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog