Mathematical Biosciences and Engineering, 2013, 10(5&6): 1519-1538. doi: 10.3934/mbe.2013.10.1519.

Primary: 92D40, 34D, 35K; Secondary: 35C07.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Spatially heterogeneous invasion of toxic plant mediated by herbivory

1. Department of Mathematics, Nanjing University of Information Science and Technology, Nanjing 210044
2. Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899
3. Department of Biology, University of Miami, Coral Gables, Florida 33124

Spatially homogeneous (ODE) and reaction-diffusion models for plant-herbivore interactions with toxin-determined functional response are analyzed. The models include two plant species that have different levels of toxicity. The plant species with a higher level of toxicity is assumed to be less preferred by the herbivore and to have a relatively lower intrinsic growth rate than the less toxic plant species. Two of the equilibrium points of the system representing significant ecological interests are $E_1$, in which only the less toxic plant is present, and$E_2$, in which the more toxic plant and herbivore coexist while the less toxic plant has gone to extinction. Under certain conditions it is shown that, for the spatially homogeneous system all solutions will converge to the equilibrium $E_2$, whereas for the reaction-diffusion model there exist traveling wave solutions connecting $E_1$ and $E_2$.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Spatially heterogeneous; traveling waves.; invasion of toxic plant; plant-herbivor interactions; reaction-diffusion systems

Citation: Zhilan Feng, Wenzhang Huang, Donald L. DeAngelis. Spatially heterogeneous invasion of toxic plant mediated by herbivory. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1519-1538. doi: 10.3934/mbe.2013.10.1519

References

  • 1. in "Taiga Ecosystem Function" (eds. K. Van Cleve, F. S. Chapin III, P. W. Flanagan, L. A. Viereck and C. T. Dyrness), Springer-Verlag, New York, (1986), 213-225.
  • 2. Journal of Biogeography, 34 (2007), 1622-1631.
  • 3. SIAM J. Appl. Math., 74 (2012), 1002-1020.
  • 4. in "Alaska's Changing Boreal Forest" (eds. F. S. Chapin III, M .W. Oswood, L. W. Viereck and D. L. Verbyla), Oxford University Press, Oxford, 2006.
  • 5. Science, 285 (1999), 1742-1744.
  • 6. Proc. Nat. Acad. Sci., 102 (2005), 12465-12470.
  • 7. J. Math. Biology, 17 (1983), 11-32.
  • 8. Trans. Amer. Math. Society, 286 (1984), 557-594.
  • 9. Theor. Pop. Biol., 73 (2008), 449-459.
  • 10. Ecosystems, 12 (2010), 534-547.
  • 11. Mathematical Biosciences, 299 (2011), 190-204.
  • 12. Ecological Modeling, 244 (2012), 79-92.
  • 13. Lecture Notes in Biomath., 28, Springer-Verlag, New York, 1979.
  • 14. Global Change Biology, 18 (2012), 3455-3463.
  • 15. Bull. Amer. Math. Soc., 32 (1995), 446-452.
  • 16. J. Dyn. Diff. Equations, 22 (2012), 633-644.
  • 17. Ecosystems, 15 (2012), 1219-1233.
  • 18. Oikos, 82 (1998), 377-383.
  • 19. in "Alaska's Changing Boreal Forest" (eds. F. S. III Chapin, M. W. Oswood, L. W. Viereck and D. L. Verbyla), Oxford University Press, Oxford, (2006), 211-226.
  • 20. Math. Biosci., 196 (2005), 82-98.
  • 21. Chaos, Solitons and Fractals, 37 (2008), 476-486.
  • 22. J. Dynam. Differential Equations, 18 (2006), 1021-1024.
  • 23. J. Dynam. Diff. Equations, 23 (2011), 903-921.
  • 24. J. Diff. Equations, 245 (2008), 442-467.
  • 25. Phil. Trans. Royal. Society. London B, 354 (1999), 1951-1959.
  • 26. Environmental Research Letters, 6 (2011), 045509.
  • 27. Ecological Applications, 3 (1993), 385-395.
  • 28. Global Change Biology, 15 (2009), 2681-2693.
  • 29. Am. Nat., 139 (1992), 690-705.
  • 30. Proceedings of the National Academy of Sciences, 105 (2008), 12353-12358.
  • 31. Nature, 390 (1997), 456.
  • 32. Journal of Vegetation Science, 23 (2012), 617-625.
  • 33. J. Math. Biol., 30 (1992), 755-763.
  • 34. Nature, 416 (2002), 389-395.
  • 35. Environmental Research Letters, 6 (2011), 045505.

 

This article has been cited by

  • 1. John P. Bryant, Kyle Joly, F. Stuart Chapin, Donald L. DeAngelis, Knut Kielland, Can antibrowsing defense regulate the spread of woody vegetation in arctic tundra?, Ecography, 2014, 37, 3, 204, 10.1111/j.1600-0587.2013.00436.x
  • 2. Yulin Zhao, Zhilan Feng, Yiqiang Zheng, Xiuli Cen, Existence of limit cycles and homoclinic bifurcation in a plant–herbivore model with toxin-determined functional response, Journal of Differential Equations, 2015, 258, 8, 2847, 10.1016/j.jde.2014.12.029
  • 3. Andrea K. Barreiro, Jared C. Bronski, Zoi Rapti, Applications of a Class of Herglotz Operator Pencils, SIAM Journal on Mathematical Analysis, 2019, 51, 1, 256, 10.1137/18M1185673

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, Zhilan Feng, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved