Bacteria--phagocyte dynamics, axiomatic modelling and mass-action kinetics

  • Received: 01 March 2010 Accepted: 29 June 2018 Published: 01 April 2011
  • MSC : Primary: 92-06, 92B99; Secondary: 92D25.

  • Axiomatic modeling is ensued to provide a family of models that describe bacterial growth in the presence of phagocytes, or, more generally, prey dynamics in a large spatially homogenous eco-system. A classification of the possible bifurcation diagrams that arise in such models is presented. It is shown that other commonly used models that do not belong to this class may miss important features that are associated with the limited growth curve of the bacteria (prey) and the saturation associated with the phagocytosis (predator kill) term. Notably, these features appear at relatively low concentrations, much below the saturation range. Finally, combining this model with a model of neutrophil dynamics in the blood after chemotherapy treatments we obtain new insights regarding the development of infections under neutropenic conditions.

    Citation: Roy Malka, Vered Rom-Kedar. Bacteria--phagocyte dynamics,axiomatic modelling and mass-action kinetics[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 475-502. doi: 10.3934/mbe.2011.8.475

    Related Papers:

  • Axiomatic modeling is ensued to provide a family of models that describe bacterial growth in the presence of phagocytes, or, more generally, prey dynamics in a large spatially homogenous eco-system. A classification of the possible bifurcation diagrams that arise in such models is presented. It is shown that other commonly used models that do not belong to this class may miss important features that are associated with the limited growth curve of the bacteria (prey) and the saturation associated with the phagocytosis (predator kill) term. Notably, these features appear at relatively low concentrations, much below the saturation range. Finally, combining this model with a model of neutrophil dynamics in the blood after chemotherapy treatments we obtain new insights regarding the development of infections under neutropenic conditions.


    加载中
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2094) PDF downloads(560) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog