1.
|
Julia Mikhal, Bernard J. Geurts,
Development and application of a volume penalization immersed boundary method for the computation of blood flow and shear stresses in cerebral vessels and aneurysms,
2013,
67,
0303-6812,
1847,
10.1007/s00285-012-0627-5
|
|
2.
|
Øyvind Evju, Kristian Valen-Sendstad, Kent-André Mardal,
A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions,
2013,
46,
00219290,
2802,
10.1016/j.jbiomech.2013.09.004
|
|
3.
|
Telma Guerra, Jorge Tiago, Adélia Sequeira,
Optimal control in blood flow simulations,
2014,
64,
00207462,
57,
10.1016/j.ijnonlinmec.2014.04.005
|
|
4.
|
Jorge Tiago,
Numerical simulations for the stabilization and estimation problem of a semilinear partial differential equation,
2015,
98,
01689274,
18,
10.1016/j.apnum.2015.08.003
|
|
5.
|
Julia Mikhal, Bernard J. Geurts,
Immersed boundary method for pulsatile transitional flow in realistic cerebral aneurysms,
2014,
91,
00457930,
144,
10.1016/j.compfluid.2013.12.009
|
|
6.
|
J. Pavlova, A. Fasano, J. Janela, A. Sequeira,
Numerical validation of a synthetic cell-based model of blood coagulation,
2015,
380,
00225193,
367,
10.1016/j.jtbi.2015.06.004
|
|
7.
|
S. V. Sindeev, S. V. Frolov,
Modeling the hemodynamics of the cardiovascular system with cerebral aneurysm,
2017,
9,
2070-0482,
108,
10.1134/S2070048217010148
|
|
8.
|
Adélia Sequeira, Jorge Tiago, Telma Guerra,
2018,
Chapter 3,
978-3-319-91091-8,
27,
10.1007/978-3-319-91092-5_3
|
|
9.
|
Hernán G. Morales, Odile Bonnefous,
Unraveling the relationship between arterial flow and intra-aneurysmal hemodynamics,
2015,
48,
00219290,
585,
10.1016/j.jbiomech.2015.01.016
|
|
10.
|
N. El Khatib, O. Kafi, A. Sequeira, S. Simakov, Yu. Vassilevski, V. Volpert, Vitaly Volpert,
Mathematical modelling of atherosclerosis,
2019,
14,
0973-5348,
603,
10.1051/mmnp/2019050
|
|
11.
|
J. Tiago, T. Guerra, A. Sequeira,
A velocity tracking approach for the data assimilation problem in blood flow simulations,
2017,
33,
20407939,
e2856,
10.1002/cnm.2856
|
|
12.
|
O. Kafi, A. Sequeira,
2019,
Chapter 17,
978-3-030-23432-4,
255,
10.1007/978-3-030-23433-1_17
|
|
13.
|
A.M. Robertson, P.N. Watton,
Computational Fluid Dynamics in Aneurysm Research: Critical Reflections, Future Directions,
2012,
33,
0195-6108,
992,
10.3174/ajnr.A3192
|
|
14.
|
Olivia Miraucourt, Stéphanie Salmon, Marcela Szopos, Marc Thiriet,
Blood flow in the cerebral venous system: modeling and simulation,
2017,
20,
1025-5842,
471,
10.1080/10255842.2016.1247833
|
|
15.
|
Alexandru M. Morega, Cristina Savastru, Mihaela Morega,
2013,
Numerical simulation of flow dynamics in the Brachial-Ulnar-Radial arterial system,
978-1-4799-2373-1,
1,
10.1109/EHB.2013.6707352
|
|
16.
|
Ziya Isiksacan, Mohammad Asghari, Caglar Elbuken,
A microfluidic erythrocyte sedimentation rate analyzer using rouleaux formation kinetics,
2017,
21,
1613-4982,
10.1007/s10404-017-1878-7
|
|
17.
|
S. Boujena, O. Kafi, N. El Khatib, A. Sequeira, V. Volpert,
A 2D Mathematical Model of Blood Flow and its Interactions in an Atherosclerotic Artery,
2014,
9,
0973-5348,
46,
10.1051/mmnp/20149605
|
|
18.
|
Zhibin Zhou, Xi Chen, Xue Zhou, Xiaoyu Yang, Dihan Lu, Wenbin Kang, Xia Feng,
Effects of Intraoperative Gelatin on Blood Viscosity and Oxygenation Balance,
2019,
34,
10899472,
1274,
10.1016/j.jopan.2019.05.136
|
|
19.
|
L Achab,
Numerical simulations of the pulsatile blood flow in narrowing small vessels using different rheological models,
2019,
1294,
1742-6588,
022028,
10.1088/1742-6596/1294/2/022028
|
|
20.
|
S. V. FROLOV, S. V. SINDEEV, D. LIEPSCH, A. BALASSO, P. ARNOLD, J. S. KIRSCHKE, S. PROTHMANN, A. YU. POTLOV,
NEWTONIAN AND NON-NEWTONIAN BLOOD FLOW AT A 90∘-BIFURCATION OF THE CEREBRAL ARTERY: A COMPARATIVE STUDY OF FLUID VISCOSITY MODELS,
2018,
18,
0219-5194,
1850043,
10.1142/S0219519418500434
|
|
21.
|
Denesh Sooriamoorthy, Audrey Li-Huey Wee, Anandan Shanmugam, Khor Jeen Ghee, Pei Cheng Ooi, Marwan Nafea,
2020,
A Study on the Effect of Electrical Parameters of Zero-Dimensional Cardiovascular System on Aortic Waveform,
978-1-7281-9317-5,
374,
10.1109/SCOReD50371.2020.9250931
|
|
22.
|
J. Mikhal, D.J. Kroon, C.H. Slump, B.J. Geurts,
Flow prediction in cerebral aneurysms based on geometry reconstruction from 3D rotational angiography,
2013,
29,
20407939,
777,
10.1002/cnm.2558
|
|
23.
|
Frank Weichert, Lars Walczak, Denis Fisseler, Tobias Opfermann, Mudassar Razzaq, Raphael Münster, Stefan Turek, Iris Grunwald, Christian Roth, Christian Veith, Mathias Wagner,
Simulation of Intra-Aneurysmal Blood Flow by Different Numerical Methods,
2013,
2013,
1748-670X,
1,
10.1155/2013/527654
|
|
24.
|
J. Tiago, A. Gambaruto, A. Sequeira, A. Sequeira, V. Volpert,
Patient-specific Blood Flow Simulations: Setting Dirichlet Boundary Conditions for Minimal Error with Respect to Measured Data,
2014,
9,
0973-5348,
98,
10.1051/mmnp/20149608
|
|
25.
|
H.G. Morales, O. Bonnefous,
2017,
9780128110188,
253,
10.1016/B978-0-12-811018-8.00010-2
|
|
26.
|
D Liepsch, S Sindeev, S Frolov,
An impact of non-Newtonian blood viscosity on hemodynamics in a patient-specific model of a cerebral aneurysm,
2018,
1084,
1742-6588,
012001,
10.1088/1742-6596/1084/1/012001
|
|
27.
|
S. Ramalho, A. Moura, A.M. Gambaruto, A. Sequeira,
Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm,
2012,
28,
20407939,
697,
10.1002/cnm.2461
|
|
28.
|
Isaac Perez-Raya, Mojtaba F. Fathi, Ahmadreza Baghaie, Raphael Sacho, Roshan M. D’Souza,
Modeling and Reducing the Effect of Geometric Uncertainties in Intracranial Aneurysms with Polynomial Chaos Expansion, Data Decomposition, and 4D-Flow MRI,
2021,
1869-408X,
10.1007/s13239-020-00511-w
|
|
29.
|
A.J. Geers, I. Larrabide, H.G. Morales, A.F. Frangi,
Approximating hemodynamics of cerebral aneurysms with steady flow simulations,
2014,
47,
00219290,
178,
10.1016/j.jbiomech.2013.09.033
|
|
30.
|
Alexandru Morega, Mihaela Morega, Alin Dobre,
2021,
9780128178973,
1,
10.1016/B978-0-12-817897-3.00001-4
|
|
31.
|
Susana Ramalho, Alexandra B. Moura, Alberto M. Gambaruto, Adélia Sequeira,
2013,
Chapter 6,
978-1-4614-4177-9,
149,
10.1007/978-1-4614-4178-6_6
|
|
32.
|
Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms,
2013,
10,
1551-0018,
649,
10.3934/mbe.2013.10.649
|
|
33.
|
Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira,
Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery,
2017,
14,
1551-0018,
179,
10.3934/mbe.2017012
|
|
34.
|
L. John, P. Pustějovská, O. Steinbach,
On the influence of the wall shear stress vector form on hemodynamic indicators,
2017,
18,
1432-9360,
113,
10.1007/s00791-017-0277-7
|
|
35.
|
Ali Sarrami-Foroushani, Toni Lassila, Alejandro F. Frangi,
Virtual endovascular treatment of intracranial aneurysms: models and uncertainty,
2017,
9,
19395094,
e1385,
10.1002/wsbm.1385
|
|
36.
|
J.M.C. Pereira, J.P. Serra e Moura, A.R. Ervilha, J.C.F. Pereira,
On the uncertainty quantification of blood flow viscosity models,
2013,
101,
00092509,
253,
10.1016/j.ces.2013.05.033
|
|
37.
|
T. Bodnár, M. Pires, J. Janela, A. Sequeira, V. Volpert,
Blood Flow Simulation Using Traceless Variant of Johnson-Segalman Viscoelastic Model,
2014,
9,
0973-5348,
117,
10.1051/mmnp/20149609
|
|
38.
|
Khalid M Saqr,
Computational fluid dynamics simulations of cerebral aneurysm using Newtonian, power-law and quasi-mechanistic blood viscosity models,
2020,
234,
0954-4119,
711,
10.1177/0954411920917531
|
|
39.
|
S. Boujena, N. El Khatib, O. Kafi,
Generalized Navier–Stokes equations with non-standard conditions for blood flow in atherosclerotic artery,
2016,
95,
0003-6811,
1645,
10.1080/00036811.2015.1068297
|
|
40.
|
Vahid Goodarzi Ardakani, Xin Tu, Alberto M. Gambaruto, Iolanda Velho, Jorge Tiago, Adélia Sequeira, Ricardo Pereira,
Near-Wall Flow in Cerebral Aneurysms,
2019,
4,
2311-5521,
89,
10.3390/fluids4020089
|
|
41.
|
A. Sequeira, T. Bodnár, A. Sequeira, V. Volpert,
Blood Coagulation Simulations using a Viscoelastic Model,
2014,
9,
0973-5348,
34,
10.1051/mmnp/20149604
|
|
42.
|
Masoud Ahmadi, Reza Ansari,
Computational simulation of an artery narrowed by plaque using 3D FSI method: influence of the plaque angle, non-Newtonian properties of the blood flow and the hyperelastic artery models,
2019,
5,
2057-1976,
045037,
10.1088/2057-1976/ab323f
|
|
43.
|
Zineb Mimouni,
The Rheological Behavior of Human Blood—Comparison of Two Models,
2016,
06,
2164-5388,
29,
10.4236/ojbiphy.2016.62004
|
|
44.
|
Yang Zhang, Junjie Fan, Yunxia Xiu, Luyao Zhang, Guangxin Chen, Jinyu Fan, Xiao Lin, Chen Ding, Mingming Feng, Ruliang Wang, Yang Liu,
Numerical simulation flow dynamics of an intracranial aneurysm,
2022,
33,
09592989,
123,
10.3233/BME-211270
|
|
45.
|
Richard Schussnig, Douglas R.Q. Pacheco, Thomas-Peter Fries,
Robust stabilised finite element solvers for generalised Newtonian fluid flows,
2021,
442,
00219991,
110436,
10.1016/j.jcp.2021.110436
|
|
46.
|
Yuya Uchiyama, Soichiro Fujimura, Hiroyuki Takao, Takashi Suzuki, Motoharu Hayakawa, Toshihiro Ishibashi, Kostadin Karagiozov, Koji Fukudome, Yuichi Murayama, Makoto Yamamoto,
Hemodynamic Investigation of the Effectiveness of a Two Overlapping Flow Diverter Configuration for Cerebral Aneurysm Treatment,
2021,
8,
2306-5354,
143,
10.3390/bioengineering8100143
|
|
47.
|
Yuya Uchiyama, Soichiro Fujimura, Hiroyuki Takao, Takashi Suzuki, Toshihiro Ishibashi, Katharina Otani, Kostadin Karagiozov, Koji Fukudome, Hideki Yamamoto, Makoto Yamamoto, Yuichi Murayama,
Role of patient-specific blood properties in computational fluid dynamics simulation of flow diverter deployed cerebral aneurysms,
2022,
30,
09287329,
839,
10.3233/THC-213216
|
|
48.
|
Yunfei Ling, Torsten Schenkel, Jiguo Tang, Hongtao Liu,
Computational fluid dynamics investigation on aortic hemodynamics in double aortic arch before and after ligation surgery,
2022,
141,
00219290,
111231,
10.1016/j.jbiomech.2022.111231
|
|
49.
|
Augusto Fava Sanches, Suprosanna Shit, Yigit Özpeynirci, Thomas Liebig,
CFD to Quantify Idealized Intra-Aneurysmal Blood Flow in Response to Regular and Flow Diverter Stent Treatment,
2022,
7,
2311-5521,
254,
10.3390/fluids7080254
|
|
50.
|
Vahid Goodarzi Ardakani, Alberto M. Gambaruto, Goncalo Silva, Ricardo Pereira,
A porosity model for medical image segmentation of vessels,
2022,
38,
2040-7939,
10.1002/cnm.3580
|
|
51.
|
Kevin Richter, Tristan Probst, Anna Hundertmark, Pepe Eulzer, Kai Lawonn,
Longitudinal wall shear stress evaluation using centerline projection approach in the numerical simulations of the patient-based carotid artery,
2023,
1025-5842,
1,
10.1080/10255842.2023.2185478
|
|
52.
|
O. Kafi,
A numerical 3D fluid-structure interaction model for blood flow in an atherosclerotic carotid artery,
2023,
10,
23129794,
825,
10.23939/mmc2023.03.825
|
|
53.
|
Nader El Khatib, Oualid Kafi, Diana Oliveira, Adélia Sequeira, Jorge Tiago,
A numerical 3D fluid-structure interaction model for blood flow in a MRI-based atherosclerotic artery,
2023,
18,
0973-5348,
26,
10.1051/mmnp/2023014
|
|
54.
|
Pablo Jeken-Rico, Aurèle Goetz, Philippe Meliga, Aurélien Larcher, Yigit Özpeynirci, Elie Hachem,
Evaluating the Impact of Domain Boundaries on Hemodynamics in Intracranial Aneurysms within the Circle of Willis,
2023,
9,
2311-5521,
1,
10.3390/fluids9010001
|
|
55.
|
Iolanda Velho, Jorge Tiago, Ricardo Pereira, Adélia Sequeira,
2024,
Chapter 16,
978-3-031-53739-4,
301,
10.1007/978-3-031-53740-0_16
|
|
56.
|
Abdulgaphur Athani, Nik Nazri Nik Ghazali, Irfan Anjum Badruddin, Abdullah Y. Usmani, Mohammad Amir, Digamber Singh, Sanan H. Khan,
Image-Based Hemodynamic and Rheological Study of Patient’s Diseased Arterial Vasculatures Using Computational Fluid Dynamics (CFD) and Fluid–Structure Interactions (FSI) Analysis: A review,
2024,
1134-3060,
10.1007/s11831-024-10193-5
|
|