Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology

  • Received: 01 March 2010 Accepted: 29 June 2018 Published: 01 April 2011
  • MSC : Primary: 76A05, 76Z05.

  • Newtonian and generalized Newtonian mathematical models for blood flow are compared in two different reconstructions of an anatomically realistic geometry of a saccular aneurysm, obtained from rotational CTA and differing to within image resolution. The sensitivity of the flow field is sought with respect to geometry reconstruction procedure and mathematical model choice in numerical simulations.
       Taking as example a patient specific intracranial aneurysm located on an outer bend under steady state simulations, it is found that the sensitivity to geometry variability is greater, but comparable, to the one of the rheological model. These sensitivities are not quantifiable a priori. The flow field exhibits a wide range of shear stresses and slow recirculation regions that emphasize the need for careful choice of constitutive models for the blood. On the other hand, the complex geometrical shape of the vessels is found to be sensitive to small scale perturbations within medical imaging resolution.
       The sensitivity to mathematical modeling and geometry definition are important when performing numerical simulations from in vivo data, and should be taken into account when discussing patient specific studies since differences in wall shear stress range from 3% to 18%.

    Citation: Alberto M. Gambaruto, João Janela, Alexandra Moura, Adélia Sequeira. Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 409-423. doi: 10.3934/mbe.2011.8.409

    Related Papers:

    [1] Alberto Gambaruto, João Janela, Alexandra Moura, Adélia Sequeira . Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms. Mathematical Biosciences and Engineering, 2013, 10(3): 649-665. doi: 10.3934/mbe.2013.10.649
    [2] Yuqian Mei, Debao Guan, Xinyu Tong, Qian Liu, Mingcheng Hu, Guangxin Chen, Caijuan Li . Association of cerebral infarction with vertebral arterial fenestration using non-Newtonian hemodynamic evaluation. Mathematical Biosciences and Engineering, 2022, 19(7): 7076-7090. doi: 10.3934/mbe.2022334
    [3] Yan Wang, Yonghui Qiao, Yankai Mao, Chenyang Jiang, Jianren Fan, Kun Luo . Numerical prediction of thrombosis risk in left atrium under atrial fibrillation. Mathematical Biosciences and Engineering, 2020, 17(3): 2348-2360. doi: 10.3934/mbe.2020125
    [4] Benchawan Wiwatanapataphee, Yong Hong Wu, Thanongchai Siriapisith, Buraskorn Nuntadilok . Effect of branchings on blood flow in the system of human coronary arteries. Mathematical Biosciences and Engineering, 2012, 9(1): 199-214. doi: 10.3934/mbe.2012.9.199
    [5] B. Wiwatanapataphee, D. Poltem, Yong Hong Wu, Y. Lenbury . Simulation of Pulsatile Flow of Blood in Stenosed Coronary Artery Bypass with Graft. Mathematical Biosciences and Engineering, 2006, 3(2): 371-383. doi: 10.3934/mbe.2006.3.371
    [6] Nattawan Chuchalerm, Wannika Sawangtong, Benchawan Wiwatanapataphee, Thanongchai Siriapisith . Study of Non-Newtonian blood flow - heat transfer characteristics in the human coronary system with an external magnetic field. Mathematical Biosciences and Engineering, 2022, 19(9): 9550-9570. doi: 10.3934/mbe.2022444
    [7] Meiyuan Du, Chi Zhang, Sheng Xie, Fang Pu, Da Zhang, Deyu Li . Investigation on aortic hemodynamics based on physics-informed neural network. Mathematical Biosciences and Engineering, 2023, 20(7): 11545-11567. doi: 10.3934/mbe.2023512
    [8] Huu Thuan Nguyen, Tu Anh Do, Benoît Cosson . Numerical simulation of submerged flow bridge scour under dam-break flow using multi-phase SPH method. Mathematical Biosciences and Engineering, 2019, 16(5): 5395-5418. doi: 10.3934/mbe.2019269
    [9] Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen . Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences and Engineering, 2009, 6(1): 93-115. doi: 10.3934/mbe.2009.6.93
    [10] Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira . Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences and Engineering, 2017, 14(1): 179-193. doi: 10.3934/mbe.2017012
  • Newtonian and generalized Newtonian mathematical models for blood flow are compared in two different reconstructions of an anatomically realistic geometry of a saccular aneurysm, obtained from rotational CTA and differing to within image resolution. The sensitivity of the flow field is sought with respect to geometry reconstruction procedure and mathematical model choice in numerical simulations.
       Taking as example a patient specific intracranial aneurysm located on an outer bend under steady state simulations, it is found that the sensitivity to geometry variability is greater, but comparable, to the one of the rheological model. These sensitivities are not quantifiable a priori. The flow field exhibits a wide range of shear stresses and slow recirculation regions that emphasize the need for careful choice of constitutive models for the blood. On the other hand, the complex geometrical shape of the vessels is found to be sensitive to small scale perturbations within medical imaging resolution.
       The sensitivity to mathematical modeling and geometry definition are important when performing numerical simulations from in vivo data, and should be taken into account when discussing patient specific studies since differences in wall shear stress range from 3% to 18%.


  • This article has been cited by:

    1. Julia Mikhal, Bernard J. Geurts, Development and application of a volume penalization immersed boundary method for the computation of blood flow and shear stresses in cerebral vessels and aneurysms, 2013, 67, 0303-6812, 1847, 10.1007/s00285-012-0627-5
    2. Øyvind Evju, Kristian Valen-Sendstad, Kent-André Mardal, A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions, 2013, 46, 00219290, 2802, 10.1016/j.jbiomech.2013.09.004
    3. Telma Guerra, Jorge Tiago, Adélia Sequeira, Optimal control in blood flow simulations, 2014, 64, 00207462, 57, 10.1016/j.ijnonlinmec.2014.04.005
    4. Jorge Tiago, Numerical simulations for the stabilization and estimation problem of a semilinear partial differential equation, 2015, 98, 01689274, 18, 10.1016/j.apnum.2015.08.003
    5. Julia Mikhal, Bernard J. Geurts, Immersed boundary method for pulsatile transitional flow in realistic cerebral aneurysms, 2014, 91, 00457930, 144, 10.1016/j.compfluid.2013.12.009
    6. J. Pavlova, A. Fasano, J. Janela, A. Sequeira, Numerical validation of a synthetic cell-based model of blood coagulation, 2015, 380, 00225193, 367, 10.1016/j.jtbi.2015.06.004
    7. S. V. Sindeev, S. V. Frolov, Modeling the hemodynamics of the cardiovascular system with cerebral aneurysm, 2017, 9, 2070-0482, 108, 10.1134/S2070048217010148
    8. Adélia Sequeira, Jorge Tiago, Telma Guerra, 2018, Chapter 3, 978-3-319-91091-8, 27, 10.1007/978-3-319-91092-5_3
    9. Hernán G. Morales, Odile Bonnefous, Unraveling the relationship between arterial flow and intra-aneurysmal hemodynamics, 2015, 48, 00219290, 585, 10.1016/j.jbiomech.2015.01.016
    10. N. El Khatib, O. Kafi, A. Sequeira, S. Simakov, Yu. Vassilevski, V. Volpert, Vitaly Volpert, Mathematical modelling of atherosclerosis, 2019, 14, 0973-5348, 603, 10.1051/mmnp/2019050
    11. J. Tiago, T. Guerra, A. Sequeira, A velocity tracking approach for the data assimilation problem in blood flow simulations, 2017, 33, 20407939, e2856, 10.1002/cnm.2856
    12. O. Kafi, A. Sequeira, 2019, Chapter 17, 978-3-030-23432-4, 255, 10.1007/978-3-030-23433-1_17
    13. A.M. Robertson, P.N. Watton, Computational Fluid Dynamics in Aneurysm Research: Critical Reflections, Future Directions, 2012, 33, 0195-6108, 992, 10.3174/ajnr.A3192
    14. Olivia Miraucourt, Stéphanie Salmon, Marcela Szopos, Marc Thiriet, Blood flow in the cerebral venous system: modeling and simulation, 2017, 20, 1025-5842, 471, 10.1080/10255842.2016.1247833
    15. Alexandru M. Morega, Cristina Savastru, Mihaela Morega, 2013, Numerical simulation of flow dynamics in the Brachial-Ulnar-Radial arterial system, 978-1-4799-2373-1, 1, 10.1109/EHB.2013.6707352
    16. Ziya Isiksacan, Mohammad Asghari, Caglar Elbuken, A microfluidic erythrocyte sedimentation rate analyzer using rouleaux formation kinetics, 2017, 21, 1613-4982, 10.1007/s10404-017-1878-7
    17. S. Boujena, O. Kafi, N. El Khatib, A. Sequeira, V. Volpert, A 2D Mathematical Model of Blood Flow and its Interactions in an Atherosclerotic Artery, 2014, 9, 0973-5348, 46, 10.1051/mmnp/20149605
    18. Zhibin Zhou, Xi Chen, Xue Zhou, Xiaoyu Yang, Dihan Lu, Wenbin Kang, Xia Feng, Effects of Intraoperative Gelatin on Blood Viscosity and Oxygenation Balance, 2019, 34, 10899472, 1274, 10.1016/j.jopan.2019.05.136
    19. L Achab, Numerical simulations of the pulsatile blood flow in narrowing small vessels using different rheological models, 2019, 1294, 1742-6588, 022028, 10.1088/1742-6596/1294/2/022028
    20. S. V. FROLOV, S. V. SINDEEV, D. LIEPSCH, A. BALASSO, P. ARNOLD, J. S. KIRSCHKE, S. PROTHMANN, A. YU. POTLOV, NEWTONIAN AND NON-NEWTONIAN BLOOD FLOW AT A 90∘-BIFURCATION OF THE CEREBRAL ARTERY: A COMPARATIVE STUDY OF FLUID VISCOSITY MODELS, 2018, 18, 0219-5194, 1850043, 10.1142/S0219519418500434
    21. Denesh Sooriamoorthy, Audrey Li-Huey Wee, Anandan Shanmugam, Khor Jeen Ghee, Pei Cheng Ooi, Marwan Nafea, 2020, A Study on the Effect of Electrical Parameters of Zero-Dimensional Cardiovascular System on Aortic Waveform, 978-1-7281-9317-5, 374, 10.1109/SCOReD50371.2020.9250931
    22. J. Mikhal, D.J. Kroon, C.H. Slump, B.J. Geurts, Flow prediction in cerebral aneurysms based on geometry reconstruction from 3D rotational angiography, 2013, 29, 20407939, 777, 10.1002/cnm.2558
    23. Frank Weichert, Lars Walczak, Denis Fisseler, Tobias Opfermann, Mudassar Razzaq, Raphael Münster, Stefan Turek, Iris Grunwald, Christian Roth, Christian Veith, Mathias Wagner, Simulation of Intra-Aneurysmal Blood Flow by Different Numerical Methods, 2013, 2013, 1748-670X, 1, 10.1155/2013/527654
    24. J. Tiago, A. Gambaruto, A. Sequeira, A. Sequeira, V. Volpert, Patient-specific Blood Flow Simulations: Setting Dirichlet Boundary Conditions for Minimal Error with Respect to Measured Data, 2014, 9, 0973-5348, 98, 10.1051/mmnp/20149608
    25. H.G. Morales, O. Bonnefous, 2017, 9780128110188, 253, 10.1016/B978-0-12-811018-8.00010-2
    26. D Liepsch, S Sindeev, S Frolov, An impact of non-Newtonian blood viscosity on hemodynamics in a patient-specific model of a cerebral aneurysm, 2018, 1084, 1742-6588, 012001, 10.1088/1742-6596/1084/1/012001
    27. S. Ramalho, A. Moura, A.M. Gambaruto, A. Sequeira, Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm, 2012, 28, 20407939, 697, 10.1002/cnm.2461
    28. Isaac Perez-Raya, Mojtaba F. Fathi, Ahmadreza Baghaie, Raphael Sacho, Roshan M. D’Souza, Modeling and Reducing the Effect of Geometric Uncertainties in Intracranial Aneurysms with Polynomial Chaos Expansion, Data Decomposition, and 4D-Flow MRI, 2021, 1869-408X, 10.1007/s13239-020-00511-w
    29. A.J. Geers, I. Larrabide, H.G. Morales, A.F. Frangi, Approximating hemodynamics of cerebral aneurysms with steady flow simulations, 2014, 47, 00219290, 178, 10.1016/j.jbiomech.2013.09.033
    30. Alexandru Morega, Mihaela Morega, Alin Dobre, 2021, 9780128178973, 1, 10.1016/B978-0-12-817897-3.00001-4
    31. Susana Ramalho, Alexandra B. Moura, Alberto M. Gambaruto, Adélia Sequeira, 2013, Chapter 6, 978-1-4614-4177-9, 149, 10.1007/978-1-4614-4178-6_6
    32. Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms, 2013, 10, 1551-0018, 649, 10.3934/mbe.2013.10.649
    33. Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira, Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery, 2017, 14, 1551-0018, 179, 10.3934/mbe.2017012
    34. L. John, P. Pustějovská, O. Steinbach, On the influence of the wall shear stress vector form on hemodynamic indicators, 2017, 18, 1432-9360, 113, 10.1007/s00791-017-0277-7
    35. Ali Sarrami-Foroushani, Toni Lassila, Alejandro F. Frangi, Virtual endovascular treatment of intracranial aneurysms: models and uncertainty, 2017, 9, 19395094, e1385, 10.1002/wsbm.1385
    36. J.M.C. Pereira, J.P. Serra e Moura, A.R. Ervilha, J.C.F. Pereira, On the uncertainty quantification of blood flow viscosity models, 2013, 101, 00092509, 253, 10.1016/j.ces.2013.05.033
    37. T. Bodnár, M. Pires, J. Janela, A. Sequeira, V. Volpert, Blood Flow Simulation Using Traceless Variant of Johnson-Segalman Viscoelastic Model, 2014, 9, 0973-5348, 117, 10.1051/mmnp/20149609
    38. Khalid M Saqr, Computational fluid dynamics simulations of cerebral aneurysm using Newtonian, power-law and quasi-mechanistic blood viscosity models, 2020, 234, 0954-4119, 711, 10.1177/0954411920917531
    39. S. Boujena, N. El Khatib, O. Kafi, Generalized Navier–Stokes equations with non-standard conditions for blood flow in atherosclerotic artery, 2016, 95, 0003-6811, 1645, 10.1080/00036811.2015.1068297
    40. Vahid Goodarzi Ardakani, Xin Tu, Alberto M. Gambaruto, Iolanda Velho, Jorge Tiago, Adélia Sequeira, Ricardo Pereira, Near-Wall Flow in Cerebral Aneurysms, 2019, 4, 2311-5521, 89, 10.3390/fluids4020089
    41. A. Sequeira, T. Bodnár, A. Sequeira, V. Volpert, Blood Coagulation Simulations using a Viscoelastic Model, 2014, 9, 0973-5348, 34, 10.1051/mmnp/20149604
    42. Masoud Ahmadi, Reza Ansari, Computational simulation of an artery narrowed by plaque using 3D FSI method: influence of the plaque angle, non-Newtonian properties of the blood flow and the hyperelastic artery models, 2019, 5, 2057-1976, 045037, 10.1088/2057-1976/ab323f
    43. Zineb Mimouni, The Rheological Behavior of Human Blood—Comparison of Two Models, 2016, 06, 2164-5388, 29, 10.4236/ojbiphy.2016.62004
    44. Yang Zhang, Junjie Fan, Yunxia Xiu, Luyao Zhang, Guangxin Chen, Jinyu Fan, Xiao Lin, Chen Ding, Mingming Feng, Ruliang Wang, Yang Liu, Numerical simulation flow dynamics of an intracranial aneurysm, 2022, 33, 09592989, 123, 10.3233/BME-211270
    45. Richard Schussnig, Douglas R.Q. Pacheco, Thomas-Peter Fries, Robust stabilised finite element solvers for generalised Newtonian fluid flows, 2021, 442, 00219991, 110436, 10.1016/j.jcp.2021.110436
    46. Yuya Uchiyama, Soichiro Fujimura, Hiroyuki Takao, Takashi Suzuki, Motoharu Hayakawa, Toshihiro Ishibashi, Kostadin Karagiozov, Koji Fukudome, Yuichi Murayama, Makoto Yamamoto, Hemodynamic Investigation of the Effectiveness of a Two Overlapping Flow Diverter Configuration for Cerebral Aneurysm Treatment, 2021, 8, 2306-5354, 143, 10.3390/bioengineering8100143
    47. Yuya Uchiyama, Soichiro Fujimura, Hiroyuki Takao, Takashi Suzuki, Toshihiro Ishibashi, Katharina Otani, Kostadin Karagiozov, Koji Fukudome, Hideki Yamamoto, Makoto Yamamoto, Yuichi Murayama, Role of patient-specific blood properties in computational fluid dynamics simulation of flow diverter deployed cerebral aneurysms, 2022, 30, 09287329, 839, 10.3233/THC-213216
    48. Yunfei Ling, Torsten Schenkel, Jiguo Tang, Hongtao Liu, Computational fluid dynamics investigation on aortic hemodynamics in double aortic arch before and after ligation surgery, 2022, 141, 00219290, 111231, 10.1016/j.jbiomech.2022.111231
    49. Augusto Fava Sanches, Suprosanna Shit, Yigit Özpeynirci, Thomas Liebig, CFD to Quantify Idealized Intra-Aneurysmal Blood Flow in Response to Regular and Flow Diverter Stent Treatment, 2022, 7, 2311-5521, 254, 10.3390/fluids7080254
    50. Vahid Goodarzi Ardakani, Alberto M. Gambaruto, Goncalo Silva, Ricardo Pereira, A porosity model for medical image segmentation of vessels, 2022, 38, 2040-7939, 10.1002/cnm.3580
    51. Kevin Richter, Tristan Probst, Anna Hundertmark, Pepe Eulzer, Kai Lawonn, Longitudinal wall shear stress evaluation using centerline projection approach in the numerical simulations of the patient-based carotid artery, 2023, 1025-5842, 1, 10.1080/10255842.2023.2185478
    52. O. Kafi, A numerical 3D fluid-structure interaction model for blood flow in an atherosclerotic carotid artery, 2023, 10, 23129794, 825, 10.23939/mmc2023.03.825
    53. Nader El Khatib, Oualid Kafi, Diana Oliveira, Adélia Sequeira, Jorge Tiago, A numerical 3D fluid-structure interaction model for blood flow in a MRI-based atherosclerotic artery, 2023, 18, 0973-5348, 26, 10.1051/mmnp/2023014
    54. Pablo Jeken-Rico, Aurèle Goetz, Philippe Meliga, Aurélien Larcher, Yigit Özpeynirci, Elie Hachem, Evaluating the Impact of Domain Boundaries on Hemodynamics in Intracranial Aneurysms within the Circle of Willis, 2023, 9, 2311-5521, 1, 10.3390/fluids9010001
    55. Iolanda Velho, Jorge Tiago, Ricardo Pereira, Adélia Sequeira, 2024, Chapter 16, 978-3-031-53739-4, 301, 10.1007/978-3-031-53740-0_16
    56. Abdulgaphur Athani, Nik Nazri Nik Ghazali, Irfan Anjum Badruddin, Abdullah Y. Usmani, Mohammad Amir, Digamber Singh, Sanan H. Khan, Image-Based Hemodynamic and Rheological Study of Patient’s Diseased Arterial Vasculatures Using Computational Fluid Dynamics (CFD) and Fluid–Structure Interactions (FSI) Analysis: A review, 2024, 1134-3060, 10.1007/s11831-024-10193-5
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3479) PDF downloads(586) Cited by(56)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog