Tumor cells proliferation and migration under the influence of their microenvironment

  • Received: 01 February 2010 Accepted: 29 June 2018 Published: 01 April 2011
  • MSC : Primary: 92C45, 92C50; Secondary: 92B05.

  • It is well known that tumor microenvironment affects tumor growth and metastasis: Tumor cells may proliferate at different rates and migrate in different patterns depending on the microenvironment in which they are embedded. There is a huge literature that deals with mathematical models of tumor growth and proliferation, in both the avascular and vascular phases. In particular, a review of the literature of avascular tumor growth (up to 2006) can be found in Lolas [8] (G. Lolas, Lecture Notes in Mathematics, Springer Berlin / Heidelberg, 1872, 77 (2006)). In this article we report on some of our recent work. We consider two aspects, proliferation and of migration, and describe mathematical models based on in vitro experiments. Simulations of the models are in agreement with experimental results. The models can be used to generate hypotheses regarding the development of drugs which will confine tumor growth.

    Citation: Avner Friedman, Yangjin Kim. Tumor cells proliferation and migration under the influence of their microenvironment[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 371-383. doi: 10.3934/mbe.2011.8.371

    Related Papers:

  • It is well known that tumor microenvironment affects tumor growth and metastasis: Tumor cells may proliferate at different rates and migrate in different patterns depending on the microenvironment in which they are embedded. There is a huge literature that deals with mathematical models of tumor growth and proliferation, in both the avascular and vascular phases. In particular, a review of the literature of avascular tumor growth (up to 2006) can be found in Lolas [8] (G. Lolas, Lecture Notes in Mathematics, Springer Berlin / Heidelberg, 1872, 77 (2006)). In this article we report on some of our recent work. We consider two aspects, proliferation and of migration, and describe mathematical models based on in vitro experiments. Simulations of the models are in agreement with experimental results. The models can be used to generate hypotheses regarding the development of drugs which will confine tumor growth.


    加载中
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2108) PDF downloads(541) Cited by(22)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog