Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits

1. Department of Mathematics, Imperial College London, SW7 2AZ, London

We ask the question Which antibiotic deployment protocols select best against drug-resistant microbes: mixing or periodic cycling? and demonstrate that the statistical distribution of the performances of both sets of protocols, mixing and periodic cycling, must have overlapping supports. In other words, it is a general, mathematical result that there must be mixing policies that outperform cycling policies and vice versa.
   As a result, we agree with the tenet of Bonhoefer et al. [1] that one should not apply the results of [2] to conclude that an antibiotic cycling policy that implements cycles of drug restriction and prioritisation on an ad-hoc basis can select against drug-resistant microbial pathogens in a clinical setting any better than random drug use. However, nor should we conclude that a random, per-patient drug-assignment protocol is the de facto optimal method for allocating antibiotics to patients in any general sense.
  Article Metrics

Keywords antibiotic mixing; Epidemiology; drug resistance.; antibiotic cycling

Citation: Robert E. Beardmore, Rafael Peña-Miller. Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits. Mathematical Biosciences and Engineering, 2010, 7(4): 923-933. doi: 10.3934/mbe.2010.7.923


This article has been cited by

  • 1. Christiane P. Goulart, Mentar Mahmudi, Kristina A. Crona, Stephen D. Jacobs, Marcelo Kallmann, Barry G. Hall, Devin C. Greene, Miriam Barlow, Norman Johnson, Designing Antibiotic Cycling Strategies by Determining and Understanding Local Adaptive Landscapes, PLoS ONE, 2013, 8, 2, e56040, 10.1371/journal.pone.0056040
  • 2. Mato Lagator, Tom Vogwill, Andrew Mead, Nick Colegrave, Paul Neve, Herbicide mixtures at high doses slow the evolution of resistance in experimentally evolving populations ofChlamydomonas reinhardtii, New Phytologist, 2013, 198, 3, 938, 10.1111/nph.12195
  • 3. A. M. Bal, A. Kumar, I. M. Gould, Antibiotic heterogeneity: from concept to practice, Annals of the New York Academy of Sciences, 2010, 1213, 1, 81, 10.1111/j.1749-6632.2010.05867.x
  • 4. Rafael Cantón, Patricia Ruiz-Garbajosa, Co-resistance: an opportunity for the bacteria and resistance genes, Current Opinion in Pharmacology, 2011, 11, 5, 477, 10.1016/j.coph.2011.07.007
  • 5. Tamar F. Barlam, Sara E. Cosgrove, Lilian M. Abbo, Conan MacDougall, Audrey N. Schuetz, Edward J. Septimus, Arjun Srinivasan, Timothy H. Dellit, Yngve T. Falck-Ytter, Neil O. Fishman, Cindy W. Hamilton, Timothy C. Jenkins, Pamela A. Lipsett, Preeti N. Malani, Larissa S. May, Gregory J. Moran, Melinda M. Neuhauser, Jason G. Newland, Christopher A. Ohl, Matthew H. Samore, Susan K. Seo, Kavita K. Trivedi, Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America, Clinical Infectious Diseases, 2016, 62, 10, e51, 10.1093/cid/ciw118
  • 6. Pia Abel zur Wiesch, Roger Kouyos, Sören Abel, Wolfgang Viechtbauer, Sebastian Bonhoeffer, Claus O. Wilke, Cycling Empirical Antibiotic Therapy in Hospitals: Meta-Analysis and Models, PLoS Pathogens, 2014, 10, 6, e1004225, 10.1371/journal.ppat.1004225
  • 7. Ronald S. Chamberlain, Brian J. Shayota, Carl Nyberg, Prasanna Sridharan, The Utility of Procalcitonin as a Biomarker to Limit the Duration of Antibiotic Therapy in Adult Sepsis Patients, Surgical Science, 2014, 05, 08, 342, 10.4236/ss.2014.58057
  • 8. Nienke L Plantinga, Bastiaan HJ Wittekamp, Pleun J van Duijn, Marc JM Bonten, Fighting antibiotic resistance in the intensive care unit using antibiotics, Future Microbiology, 2015, 10, 3, 391, 10.2217/fmb.14.146
  • 9. Andrew N. Ginn, Agnieszka M. Wiklendt, Heather F. Gidding, Narelle George, James S. O’Driscoll, Sally R. Partridge, Brian I. O’Toole, Rita A. Perri, Joan Faoagali, John E. Gallagher, Jeffrey Lipman, Jonathan R. Iredell, Stefan Bereswill, The Ecology of Antibiotic Use in the ICU: Homogeneous Prescribing of Cefepime but Not Tazocin Selects for Antibiotic Resistant Infection, PLoS ONE, 2012, 7, 6, e38719, 10.1371/journal.pone.0038719
  • 10. Daniel Nichol, Peter Jeavons, Alexander G. Fletcher, Robert A. Bonomo, Philip K. Maini, Jerome L. Paul, Robert A. Gatenby, Alexander R.A. Anderson, Jacob G. Scott, Rustom Antia, Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance, PLOS Computational Biology, 2015, 11, 9, e1004493, 10.1371/journal.pcbi.1004493
  • 11. Portia M. Mira, Kristina Crona, Devin Greene, Juan C. Meza, Bernd Sturmfels, Miriam Barlow, Paul J Planet, Rational Design of Antibiotic Treatment Plans: A Treatment Strategy for Managing Evolution and Reversing Resistance, PLOS ONE, 2015, 10, 5, e0122283, 10.1371/journal.pone.0122283
  • 12. Roger D. Kouyos, Pia Abel zur Wiesch, Sebastian Bonhoeffer, Christophe Fraser, Informed Switching Strongly Decreases the Prevalence of Antibiotic Resistance in Hospital Wards, PLoS Computational Biology, 2011, 7, 3, e1001094, 10.1371/journal.pcbi.1001094
  • 13. Antonio L. C. Gomes, James E. Galagan, Daniel Segrè, James M. McCaw, Resource Competition May Lead to Effective Treatment of Antibiotic Resistant Infections, PLoS ONE, 2013, 8, 12, e80775, 10.1371/journal.pone.0080775
  • 14. Seungsoo Kim, Tami D. Lieberman, Roy Kishony, Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance, Proceedings of the National Academy of Sciences, 2014, 111, 40, 14494, 10.1073/pnas.1409800111
  • 15. Chang-Ro Lee, Ill Cho, Byeong Jeong, Sang Lee, Strategies to Minimize Antibiotic Resistance, International Journal of Environmental Research and Public Health, 2013, 10, 9, 4274, 10.3390/ijerph10094274
  • 16. D. E. Ramsay, J. Invik, S. L. Checkley, S. P. Gow, N. D. Osgood, C. L. Waldner, Application of dynamic modelling techniques to the problem of antibacterial use and resistance: a scoping review, Epidemiology and Infection, 2018, 1, 10.1017/S0950268818002091
  • 17. Gabriel G. Perron, Sergey Kryazhimskiy, Daniel P. Rice, Angus Buckling, Multidrug Therapy and Evolution of Antibiotic Resistance: When Order Matters, Applied and Environmental Microbiology, 2012, 78, 17, 6137, 10.1128/AEM.01078-12
  • 18. François Blanquart, Evolutionary epidemiology models to predict the dynamics of antibiotic resistance, Evolutionary Applications, 2019, 10.1111/eva.12753
  • 19. Tiago Antao, Ian Hastings, Policy options for deploying anti-malarial drugs in endemic countries: a population genetics approach, Malaria Journal, 2012, 11, 1, 10.1186/1475-2875-11-422
  • 20. Nicolas Houy, Julien Flaig, Optimal dynamic empirical therapy in a health care facility: a Monte-Carlo look-ahead method, Computer Methods and Programs in Biomedicine, 2020, 105767, 10.1016/j.cmpb.2020.105767

Reader Comments

your name: *   your email: *  

Copyright Info: 2010, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved