Mathematical Biosciences and Engineering, 2010, 7(3): 687-717. doi: 10.3934/mbe.2010.7.687.

Primary: 58F15, 58F17; Secondary: 53C35.

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

A cost-based comparison of quarantine strategies for new emerging diseases

1. Mathematical, Computational & Modeling Science Center, Arizona State University, Tempe, AZ 85287-1904
2. Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76019-0408
3. Department of Mathematics, University of Florida, Gainesville, FL 32611-8105

A classical epidemiological framework is used to provide a preliminary cost analysis of the effects of quarantine and isolation on the dynamics of infectious diseases for which no treatment or immediate diagnosis tools are available. Within this framework we consider the cost incurred from the implementation of three types of dynamic control strategies. Taking the context of the 2003 SARS outbreak in Hong Kong as an example, we use a simple cost function to compare the total cost of each mixed (quarantine and isolation) control strategy from a public health resource allocation perspective. The goal is to extend existing epi-economics methodology by developing a theoretical framework of dynamic quarantine strategies aimed at emerging diseases, by drawing upon the large body of literature on the dynamics of infectious diseases. We find that the total cost decreases with increases in the quarantine rates past a critical value, regardless of the resource allocation strategy. In the case of a manageable outbreak resources must be used early to achieve the best results whereas in case of an unmanageable outbreak, a constant-effort strategy seems the best among our limited plausible sets.
  Article Metrics

Keywords reproductive number; SARS; isolation; cost-effectiveness analysis.; quarantine; Contact tracing

Citation: Anuj Mubayi, Christopher Kribs Zaleta, Maia Martcheva, Carlos Castillo-Chávez. A cost-based comparison of quarantine strategies for new emerging diseases. Mathematical Biosciences and Engineering, 2010, 7(3): 687-717. doi: 10.3934/mbe.2010.7.687


This article has been cited by

  • 1. Baojun Song, Zhilan Feng, Gerardo Chowell, From the guest editors, Mathematical Biosciences and Engineering, 2013, 10, 5/6, 10.3934/mbe.2013.10.5i
  • 2. Mohammad A. Safi, Abba B. Gumel, Dynamics analysis of a quarantine model in two patches, Mathematical Methods in the Applied Sciences, 2015, 38, 2, 349, 10.1002/mma.3072
  • 3. Erivelton G. Nepomuceno, Ricardo H.C. Takahashi, Luis A. Aguirre, Reducing vaccination level to eradicate a disease by means of a mixed control with isolation, Biomedical Signal Processing and Control, 2018, 40, 83, 10.1016/j.bspc.2017.09.004
  • 4. Yuqin Zhao, Dobromir T. Dimitrov, Hao Liu, Yang Kuang, Mathematical Insights in Evaluating State Dependent Effectiveness of HIV Prevention Interventions, Bulletin of Mathematical Biology, 2013, 75, 4, 649, 10.1007/s11538-013-9824-7
  • 5. B. Ainseba, M. Iannelli, Optimal Screening in Structured SIR Epidemics, Mathematical Modelling of Natural Phenomena, 2012, 7, 3, 12, 10.1051/mmnp/20127302
  • 6. Cameron Browne, Hayriye Gulbudak, Glenn Webb, Modeling contact tracing in outbreaks with application to Ebola, Journal of Theoretical Biology, 2015, 384, 33, 10.1016/j.jtbi.2015.08.004
  • 7. Swati DebRoy, Olivia Prosper, Austin Mishoe, Anuj Mubayi, Challenges in modeling complexity of neglected tropical diseases: a review of dynamics of visceral leishmaniasis in resource limited settings, Emerging Themes in Epidemiology, 2017, 14, 1, 10.1186/s12982-017-0065-3
  • 8. Ginny Sprang, Miriam Silman, Posttraumatic Stress Disorder in Parents and Youth After Health-Related Disasters, Disaster Medicine and Public Health Preparedness, 2013, 7, 01, 105, 10.1017/dmp.2013.22
  • 9. Mohammad A. Safi, Abba B. Gumel, Dynamics of a model with quarantine-adjusted incidence and quarantine of susceptible individuals, Journal of Mathematical Analysis and Applications, 2013, 399, 2, 565, 10.1016/j.jmaa.2012.10.015
  • 10. Necibe Tuncer, Chindu Mohanakumar, Samuel Swanson, Maia Martcheva, Efficacy of control measures in the control of Ebola, Liberia 2014–2015, Journal of Biological Dynamics, 2018, 12, 1, 913, 10.1080/17513758.2018.1535095
  • 11. Attila Dénes, Abba B. Gumel, Modeling the impact of quarantine during an outbreak of Ebola virus disease, Infectious Disease Modelling, 2019, 10.1016/j.idm.2019.01.003
  • 12. Carmen Coll, Elena Sánchez, Quarantine in an epidemic model with seasonality, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114, 1, 10.1007/s13398-019-00753-x
  • 13. Maia Martcheva, , An Introduction to Mathematical Epidemiology, 2015, Chapter 9, 215, 10.1007/978-1-4899-7612-3_9
  • 14. Gerardo Chowell, Hiroshi Nishiura, Transmission dynamics and control of Ebola virus disease (EVD): a review, BMC Medicine, 2014, 12, 1, 10.1186/s12916-014-0196-0
  • 15. Jing-An Cui, Fangyuan Chen, Effects of isolation and slaughter strategies in different species on emerging zoonoses, Mathematical Biosciences and Engineering, 2017, 14, 5/6, 1119, 10.3934/mbe.2017058
  • 16. Govind Prasad Sahu, Joydip Dhar, Dynamics of an SEQIHRS epidemic model with media coverage, quarantine and isolation in a community with pre-existing immunity, Journal of Mathematical Analysis and Applications, 2015, 421, 2, 1651, 10.1016/j.jmaa.2014.08.019
  • 17. Mohammad A. Safi, Mudassar Imran, Abba B. Gumel, Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation, Theory in Biosciences, 2012, 131, 1, 19, 10.1007/s12064-011-0148-6
  • 18. S. Namilae, A. Srinivasan, A. Mubayi, M. Scotch, R. Pahle, Self-propelled pedestrian dynamics model: Application to passenger movement and infection propagation in airplanes, Physica A: Statistical Mechanics and its Applications, 2017, 465, 248, 10.1016/j.physa.2016.08.028
  • 19. Bechir Amdouni, Marlio Paredes, Christopher Kribs, Anuj Mubayi, Why do students quit school? Implications from a dynamical modelling study, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 2197, 20160204, 10.1098/rspa.2016.0204
  • 20. Syed Azhar Ali Shah, Muhammad Altaf Khan, Muhammad Farooq, Saif Ullah, Ebraheem O. Alzahrani, A fractional order model for Hepatitis B virus with treatment via Atangana–Baleanu derivative, Physica A: Statistical Mechanics and its Applications, 2020, 538, 122636, 10.1016/j.physa.2019.122636
  • 21. Barbara Nussbaumer-Streit, Verena Mayr, Andreea Iulia Dobrescu, Andrea Chapman, Emma Persad, Irma Klerings, Gernot Wagner, Uwe Siebert, Claudia Christof, Casey Zachariah, Gerald Gartlehner, Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review, Cochrane Database of Systematic Reviews, 2020, 10.1002/14651858.CD013574
  • 22. Luis Almonte-Vega, Monica Colón-Vargas, Ligia Luna-Jarrín, Joel Martinez, Jordy Rodriguez-Rinc, Anarina L. Murillo, Mugdha Thakur, Baltazar Espinoza, Rohan Patil, Leon Arriola, Viswanathan Arunachalam, Anuj Mubayi, Cost analysis of treatment strategies for the control of HSV–2 infection in the U.S.: A mathematical modeling-based case study, Mathematical Biosciences, 2020, 324, 108347, 10.1016/j.mbs.2020.108347

Reader Comments

your name: *   your email: *  

Copyright Info: 2010, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved